
A Compressive Sensing Inspired Monte-Carlo Method for Combinatorial Optimization

Baptiste Chevalier1,∗ Shimpei Yamaguchi1,† Wojciech Roga1,‡ and Masahiro Takeoka1,2§
1Department of Electronics and Electrical Engineering, Keio University,

3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan and
2Advanced ICT Research Institute, National Institute of Information and
Communications Technology (NICT), Koganei, Tokyo 184-8795, Japan

In this paper, we present the Monte-Carlo Compressive Optimization algorithm, a new method
to solve a combinatorial optimization problem that is assumed compressible. The method relies on
random queries to the objective function in order to estimate generalized moments. Next, a greedy
algorithm from compressive sensing is repurposed to find the global optimum when not overfitting
to samples. We provide numerical results giving evidences that our methods overcome state-of-the-
art dual annealing. Moreover, we also give theoretical justification of the algorithm success and
analyze its properties. The practicality of our algorithm is enhanced by the ability to tune heuristic
parameters to available computational resources.

I. INTRODUCTION

Optimization problems stay in the very core of many
important modern world applications including engineer-
ing, finance, or physics. However, finding efficient ways to
solve these problems is an important concern, since com-
putational time usually increases exponentially with the
size of the instance. For instance, the minimization of the
cost function in neural networks is done over the space of
network parameters and finding a global extremum be-
comes harder as the network depth increases. However,
if the cost functions are continuous and differentiable,
or even convex, there are several powerful methods such
as gradient-based methods including Stochastic Gradient
Descent [1] or gradient-free methods including COBYLA
or Nelder-Meads [2, 3]. On the other hand, combinato-
rial optimization, which we focus on in this paper, turns
out to be much more difficult task. Studies from the last
decades have identified extremely challenging tasks un-
der the form of cost function that can be expressed as
the minimization of a generalized Ising Hamiltonian [4–
7]. Indeed, Ising problems have a discrete structure and
when the interaction between non-nearest neighbor spins
contribute to the energy, dynamic programming methods
[8–10] stop working (spin-glass or random energy prob-
lems). The optimization becomes extremely challenging.
The best methods known today rely on meta-heuristics,
as in the case of simulated annealing [5, 11] or genetic
algorithms. The cost function in which this complicated
structures appears are not limited to physical scenarios
but are, in fact, present in many NP problems including
NP-complete problems as the knapsack problem or the
traveling salesman problem.

In this work, we propose a novel optimization algo-
rithm which can be used to handle combinatorial opti-

∗ chevalier.baptiste@keio.jp
† shimpeiyamaguchi@keio.jp
‡ wojciech.roga@keio.jp
§ takeoka@elec.keio.ac.jp

mization tasks of high complexity as long as the prob-
lem is compressible. Loosely speaking, we say a problem
is compressible if there exists a short description which
determines all values of the function which needs to be
optimized. This implies that an embedding can be found
from the compressed description space to the optimiza-
tion space which maps all the relevant information into
the values of the cost function. The optimization method
proposed in this paper relies on the principles of compres-
sive sensing [12–15] and statistical compressive learning
[16] as well as on Monte-Carlo methods [17, 18].

Compressive sensing is a well established field which al-
lows for recovering a high dimensional signal from small
number of linear measurements given that one knows a
basis in which the signal has a sparse representation. The
recovery procedure finds the sparse representation explic-
itly, from which the high dimensional signal if derived
by the known basis transform. The number of measure-
ments needed to recover the total signal scales as a poly-
nomial function of the number of the non-zero entries of
the sparse representation which is much smaller than the
dimensionality of the signal. Compressive learning is a
relatively new idea. There, a sample from a distribution
is mixed by a sketching function and a recovery algorithm
which is applied to the sketching image returns a distribu-
tion which matches the original distribution better than
the estimates based on the sample directly. Monte Carlo
is a known approach which uses stochastic algorithms
to explore properties of high dimensional functions in-
tractable by rigorous analytical approaches. The com-
binatorial optimization method we propose here—Monte
Carlo Compressive Optimization combines appealing fea-
tures of the three fields in a novel way. It is applicable if
we can assume the existence of the sparse representation
of a function, although this representation does not need
to be known explicitly. It learns the properties of the
maximum value of the function from sketches applied to
random samples from the function, although the maxi-
mum may never be explored during the sampling process.
The approach can be useful for a wide range of applica-
tions including reinforcement learning and graph prob-
lem optimization. A numerical analysis shows the per-

2

formance of our method compared to the general state-
of-the-art method applicable to this kind of problems:
dual annealing (simulated + fast annealing) [19–21].

The paper is structured as follows. In Section II, we
will set the framework and define a complicated com-
pressible combinatorial problem determined by a few
rules. In Section III, we define and discuss our algorithm,
the Monte-Carlo Compressive Optimization algorithm.
The Section IV shows the performance of our algorithm
obtained through numerical simulation and compare it to
the state-of-the-art optimization method: dual anneal-
ing. Section V is dedicated to a theoretical justification
of the algorithm. The Section VI discusses additional
properties of the algorithm such as stability of the al-
gorithm and uniqueness of the solution. Finally, in the
last section we discuss applications of our method in Re-
inforcement Learning and finding the ground states of
complex Hamiltonians; the role quantum computers can
play in the optimization will be discussed as well.

II. OPTIMIZATION AND COMPRESSIBLE
COMBINATORIAL PROBLEMS

An optimization problem consists of finding the op-
timum (minimum or maximum) of a given real-valued
function f , namely the objective, cost, loss or reward
function. In mathematical terms, this is to find x∗ =
argminxf(x) (resp. argmax). To evaluate the perfor-
mance of an optimization method, one can consider the
query complexity framework where calls to the cost func-
tion are made through an oracle at constant cost O(1).
For combinatorial optimization, the solution space is the
space of all possible bit-strings of a given length: {0, 1}N .
This explains why naive methods—brute-force, linear
search—have a cost of O(2N). Optimization is generally
difficult but in some cases one can exploit the structure of
f to overcome the difficulty as it is the case of gradient-
methods for continuous/convex functions. For discrete
binary cost functions, a similar desirable feature is the
recursivity as it allows one to use dynamic programming
methods and changes time complexity into space com-
plexity.

Consider a compressible objective function fR : x 7→
fR(x), where x ∈ {0, 1}N and fR is uniquely determined
by a few rules R. A rule (r, ωr) can be defined as a bit-
string r ∈ R of a given length k ≤ N and an associated
reward ωr ∈ R. Only if the input bit-string x contained
the bit string r as a sub-string, then the total cost fR(x)
increases by ωr.

For a given input x, the function is defined as:

fR(x) =
∑
r∈R

N−k+1∑
i=1

ωrδh(xi→i+k−1,r),0 (1)

where xi→i+k is a k-length sub-string of the bit-string x
starting from the i-th bit, δ is the Kronecker delta and

h is the Hamming distance. From now let us use the
notation δr(xi→i+k−1) := δh(xi→i+k−1,r),0

The function is compressible in the way that all the
information is contained in a few values and there exists
a (non-linear) mapping FN : R → R2N embedding the
rules into the optimization space. This mapping is given
by the following transform:

FN (r) =
∑

x∈{0,1}N

N−k+1∑
i=1

δr(xi→i+k−1)x (2)

where x is a vector of which the x-th element is 1 and
the rest is 0. The transform FN maps a rule r to a 2N

real values vector that contains the value taken by our
function fR on {0, 1}N . We can define the vector:

fR =
∑
r∈R

ωrFN (r), (3)

as a linear combination of the transform of all rules in
R and thus redefine the function fR(x) as the x-entry of
the vector fR.
To show the difficulty in optimizing such functions, one

can rewrite fR as a diagonal matrix, it reads:

H = diag(fR)

=
∑
r∈R

ωrdiag(FN (r))

=
∑

x∈{0,1}N

∑
r∈R

n−k+1∑
i=1

ωrδr(xi→i+k−1)diag(x)

Physicist may not have failed noticing the similarities
between the diagonal form of our cost function described
above and the mathematical description of an Ising prob-
lem including non-linear coupling terms, i.e. the value of
each ωr depends on the spin configuration ωr(x). Us-
ing the conventional mapping from QUBO (or general
Binary problem) to Ising Hamiltonian for the non-zero
contributions, we have:

H =
∑
r∈R

N−k+1∑
i=1

ωrδr(xi→i+k−1)

i+k⊗
j=i

(I+ (−1)xjσz
j

2

)
(4)

where xi is the i-th bit of x, the tensor term implicitly
contains tensor identities for subspaces that are not cov-
ered by j. Developing the right part, this is exactly the
form of a general Ising Hamiltonian where interaction are
taken between the k-closest spins (tensor product of k
terms σz with consecutive indices) and coupling are non-
linear (for more detailed discussion, see Section VII).
Our goal is to find the best input bit-string x∗ that

maximizes the reward function fR(x∗). We define it as

Problem I x∗
I = argmax fR(x).

3

The association done above with a general Ising Hamil-
tonian allows us to state that, in general, this is a prob-
lem belonging to the complexity class NP-complete. This
is a really complicated problem since the reward func-
tion does not present any particular properties such as
continuity, convexity or differentiability and the solution
space is of size 2N where N is the length of any input
bit-string. When the cost function does not present any
simplifying property, it should be considered as a black
box and state-of-the-art methods rely on meta-heuristics
like simulated annealing or quantum annealing.

III. MONTE-CARLO COMPRESSIVE
OPTIMIZATION ALGORITHM

In this section, we present our main result which is a
new algorithm to solve combinatorial optimization prob-
lems like Problem I, i.e. compressible in the way de-
scribed in Section II.

Consider the cost function over the set of all possible
bit-strings of length N . It is a real-valued function
f : {0, 1}N → R+. It is also useful to consider the
probability distribution π associated with the density
function f(x) (that is normalized).

Algorithm 1
Inputs: sample size n, threshold parameter t, sketch
fucntion Φ, decoding procedure ∆.

1. Compute a sample of f called Sf . To do so: First,
draw a sample I of n indices from the uniform dis-
tribution. Then apply the sampling operator SI
defined as SI : x 7→ xδx,y∈I to f .

2. Apply a hard thresholding operator Tt such that
in TtSf all values Sf(x) lower than a given t are
removed from the sample.

3. Apply a sketching map (also known as a measure-
ment map or a feature map) Φ to get y = Φ(TtSf).
We call y the sketch vector and it contains an em-
pirical estimation of generalized moments of the dis-
tribution π.

4. Apply a decoding procedure ∆ to y and get π̃ =
∆(y). The decoding procedure is taken from com-
pressive sensing greedy methods (Matching pur-
suit, Orthogonal Matching Pursuit . . .).

5. The largest line of π̃ is used as the maximum esti-
mate.

The Monte-Carlo method [17] can be used to approx-
imate generalized moments similar to the one from [16].
This is a well known result from the probabilistic compu-
tation theory (or ergodic theory), about a large number
M of samples sampled independently from a probability

distribution π,

lim
M→∞

1

M

∑
x(i)∼π

g(x(i)) =
∑
x(i)

g(x(i))π(x(i)) (5)

≈ S

M

∑
x(i)∼U

g(x(i))π(x(i)), (6)

where S is the size of the domain. Which means that a
moment of a function g of a variable x with respect to
a measure π(x) can be approximated by sampling from
the uniform distribution and computing the value of the
density function π(x) in those points.

We now discuss the choice of the sketching function
Φ. We know from the compressive sensing theory that
functions Φ which respect some properties such as the Re-
stricted Isometry Property (RIP) are good candidates—
in practice, often randomized linear maps are used. How-
ever, structured deterministic measurement functions
can also work [15]. Also, for instance in [22, 23], struc-
tured measurement functions with different advantages
were used. Moreover, the sketching function does not
necessarily need to be linear, generalized moments of
the distribution can be of different degrees. Introducing
non-linearities such as a hard thresholding process [15]
in practice gives us better performance with respect to
random linear map alone. In addition, the choice of the
sketching function directly impact the optimization step
within the recovery algorithm. The freedom in the choice
of the sketch function allows for flexibility in the algo-
rithm complexity, which can be tailored to match one’s
available computational resources. Indeed, this turned
out to be an essential element of the practical implemen-
tation and its justification presented in the next sections.

Lastly we underline the importance of using greedy
methods as the matching pursuit rather than ℓ1 mini-
mization method such as the basis pursuit. Indeed, ℓ1
recovery methods aim at recovering the exact sparse sig-
nal by putting more emphasis on the constraints. Even
though this might be a desirable behavior in compres-
sive sensing it is not here in Monte-Carlo Compressive
Optimization. When putting more emphasis on the con-
straints, we are learning about the particular features
from the selected sample rather than the global features
from the distribution. This phenomenon is known in
learning theory as overfitting. On the other hand, greedy
methods like matching pursuit put emphasis on the spar-
sity. These methods focus on finding the one line that
match the best all constraints and this line often matches
with the maximum line of the distribution.

In section IV, we use several sketching functions to
compute generalized moments as well as the Orthogo-
nal Matching Pursuit for the decoding procedure. The
sketching functions we used are defined as follows:
Quadruplets

4

Each line of the sketching matrix is defined by

Φi,i+1,i+2,i+3
x1,x2,x3,x4

= 11 ⊗ . . . ⊗ 1i−1

⊗ (1− x1, x1)⊗ (1− x2, x2)

⊗ (1− x3, x3)⊗ (1− x4, x4)

⊗ 1i+5 ⊗ . . . ⊗ 1N

for every starting position 1 ≤ i ≤ N − 3 and xis take all
binary values.
Quintuples
Each line of the sketching matrix is defined by

Φi,i+1,i+2,i+3,i+4
x1,x2,x3,x4,x5

= 11 ⊗ . . . ⊗ 1i−1

⊗ (1− x1, x1)⊗ (1− x2, x2)

⊗ (1− x3, x3)⊗ (1− x4, x4)

⊗ (1− x5, x5)⊗ 1i+6

⊗ . . . ⊗ 1N

for every starting position 1 ≤ i ≤ N − 4 and xis take
all binary values.
Random sketch A random binary matrix.

In Section V, we will focus on using the Matching
Pursuit algorithm for decoding procedure. This defines
the following problem for the first crucial step of Match-
ing Pursuit:

Problem II x∗
II = argmaxΦTΦTSfR.

IV. NUMERICAL RESULTS: COMPARISON
WITH OTHER OPTIMIZATION METHODS

In this section, we numerically compare the perfor-
mances of the Monte-Carlo Compressive Optimization al-
gorithm when using different sketching functions Φ. We
compare their performances with each other and with
the dual annealing algorithm, known as the best heuris-
tic method to handle general combinatorial optimization
problems.

Setup : In order to work with reasonable computa-
tional time, we choose a problem of relatively small size,
bit-strings of length N = 12 (space dimension is 2N).
This also allows for visualization of the problem structure
when having a look at its, usually unknown, spectrum.
Even though the case with longer length will be the sub-
ject of further study, the theoretical arguments convince
us that similar results will still be valid. The problem
of interest is shown in Figure 3 and was randomly drawn
from the set of possible problems. Note that the problem
belongs to a general class of Ising-like cost functions that
are complicated to solve even for current state-of-the-art
heuristic methods like dual annealing.

We chose a set of possible rules described by sequences
of four, five or six bits. The number of each rules, as well
as each pattern, are chosen randomly. The metric used

in Figure 4 is the average distance (over the choice of
samples) to the real optimum f(x∗)− f(x̂). We compare
this distance for different sample size n going from 50 to
300.
Additionally, Figure 1 gives the distribution of this

same distance for different estimates coming from dis-
tinct samples. Another interesting metric is the Ham-
ming distance of the estimate string x̂ to the optimal one
x∗. This Hamming distance distribution for different es-
timates coming from distinct sample appears in Figure
2.
In the case of the dual annealing, we chose the number

of iterations to be of the same order as the sample size.
Indeed, this is a fair comparison since the number of calls
to the cost function f , supposedly costly, will remain the
same in both cases. In addition, the annealing method is
in fact similar to a sampling method—it can be associ-
ated with the Metropolis-Hastings algorithm [24] where
the sampling domain is reduced at each iteration.
Results interpretation: The results are shown in

Figure 4. First observation is that all three sketching
functions reduce the distance to the optimum in a polyno-
mial way. Quadruplets and quintuplets methods perform
well compared to the random linear sketch function but
also to the annealing. Indeed, for quadruplets and quin-
tuplets methods, the distance to the optimum reduces in
a similar or faster manner with respect to the annealing
method. This is strong evidence that, on this class of
compressible cost functions, our method can outperform
the state-of-the-art dual annealing method, especially in
the useful case of the small sample size solution.
Figure 1 shows that in most cases (more than 50%

cases for non-random sketch method) we are able to find
the actual optimum. Even when failed, the suggested
solutions are close to the minimum within a tight interval
from f(x∗). Figure 2 shows that most of the time, for
a random sample, the corresponding estimate belongs to
the neighborhood of the solution x∗ (for the metric space
F2 with the Hamming distance). Even in the worst case
scenario, the Hamming distance never drops below half
its maximum, i.e. the algorithm never performs worse
than a random choice.

V. JUSTIFICATION OF ALGORITHM 1

Although, currently, we do not have the rigorous the-
oretical bounds on the probability with which Algorithm
1 approaches the correct solution with a given error, we
can provide a heuristic justification of the algorithm sup-
ported by numerical simulation and rigorous proofs of
lemmas and propositions whenever possible.
Consider a simplified situation with a single 3-bit rule

r = r1r2r3. We define our target problem, which is to
find a binary string x∗

I that contains as many sub-string
identical to r as possible. Notice that r is unknown and
does not need to be known, while x∗

I is learned based on
rewards given to randomly selected binary strings, where

5

(a) Annealing (b) Random sketch

(c) Quadruplets sketch (d) Quintuples sketch

FIG. 1: Distribution of the distance between estimate solutions f(x) and the optimum f(x∗). On each plot, the
percentage of estimate solutions that lies in given distance interval. The methods used are: (a) annealing and
(b)(c)(d) Monte-Carlo Compressive Optimization with different sketch functions. N = 12 and n = 250

for a given string the reward is equal to the number of
times the rule r appears in it.

In Algorithm 1, we solve Problem II where the rows of
matrix Φ, are given by
Duplets

Φi,i+1
x1,x2

= 11 ⊗ . . . ⊗ 1i−1 (7)

⊗ (1− x1, x1)⊗ (1− x2, x2)⊗ 1i+2 ⊗ . . . ⊗ 1N

for the [4(i − 1) + 2x1 + x2 + 1]-th row and x1 and x2

are binary variables.

Define variable µi
x = Φi

xY , where

Φi
x = 11 ⊗ . . . ⊗ 1i−1 ⊗ (1− x, x)⊗ 1i+1 ⊗ . . . ⊗ 1N

is a Singulet map and

Y = (1− y1, y1)⊗ . . . ⊗ (1− yn, yn),

where is the zero vector except at the position given by
the binary variables yi ∈ {0, 1}. If vectors Y are ran-
domly chosen from a distribution, the variable µi

x is a

random variable. Assume Y are defined by arguments
of the function TtSfR—lines sampled uniformly from fR
and thresholded.
Moments φi,i+1

x1,x2
= ⟨µi

x1
µi+1
x2

⟩ are calculated as

Φi,i+1
x1,x2

TtSfR, where Φi,i+1
x1,x2

is given in (7). Up to nor-
malization, these moments express averages over sam-
pled elements of fR with weights corresponding to the
value each element. Analogously, we consider moments
φi,i+1,i+2
x1,x2,x3

= ⟨µi
x1
µi+1
x2

µi+2
x3

⟩. These averages are related
to appropriate correlation functions

corri1...inxi1 ,...,xin
=

⟨(µi1
xi1

− ⟨µi1
xi1

⟩)...(µin
xin

− ⟨µin
xin

⟩)⟩
⟨µi1

xi1
⟩...⟨µin

xin
⟩

.

Therefore, loosely speaking, the moments express cor-
relations between a given bit configuration x1...xn ∈ Σn

and the appearance of this configuration in important ele-
ments of the sample from fR. The importance is specified
by values of fR that remain after sampling and thresh-
olding.
In Algorithm 1 we solve Problem II, which is, we find

6

(a) Annealing (b) Random sketch

(c) Quadruplets sketch (d) Quintuples sketch

FIG. 2: Distribution of the Hamming distance between estimate solutions x and the optimum x∗. On each plot, the
percentage of estimate solutions for a given hamming distance. The methods used are: (a) annealing and (b)(c)(d)
Monte-Carlo Compressive Optimization with different sketch functions.N = 12 and n = 250

a string x∗
II for which the sum of correlations for neigh-

boring variables is maximized,

x∗
II = argmax

N−1∑
i=1

φi,i+1
x1,x2

. (8)

Moreover, the way Algorithm 1 assigns the values φi,i+1
x1,x2

induces correlations between these values.
Our numerical analysis shows that solving Problem II

often suffices to solve Problem I. Because x∗
I contains sev-

eral times r1r2r3 it is true that r2 follows r1 more often
than in a random string (the same for the pair r3 and r2),
and obviously, r3 follows the pair r1r2 more often than
in random sequences. Therefore, the minimum require-
ment for any solver of Problem I should be to propose
candidate solutions x which:

• Condition 1: possibly often contain pairs of bits
r1r2 and r2r3, and

• Condition 2: the pairs appear in proper order, r2r3
likely appear after r1r2.

Notice that the solution of Problem II is a binary string
x∗
II which is defined by the lower indices of the variables

µi
xi

for which the sum of correlations φi,i+1
x1,x2

= ⟨µi
x1
µi+1
x2

⟩
is maximum (as in Equation (8)). In the following propo-
sition (proven in Appendix A), we show that pairs of
variables with x1x2 matching substrings of r have larger
expected moments than bits that does not match r.

Proposition 1. Let φi,i+1
x = Φi,i+1

x fR,

(i) for the problem with single rule r, for any 2 ≤ i ≤
N − 2, if r′ is a substring of r, and z is not, then

φi,i+1
r′ ≥ φi,i+1

z ,

(ii) for the problem with single rule r, for any i, there
exists at least one r′ substring of r such that, for
any string z:

φi,i+1
r′ ≥ φi,i+1

z ,

(iii) for the problem with single rule r, for any i, there
exists at least one r′ substring of r such that,

7

FIG. 3: Example of fR. On the x axis, we list all
binary sequences. Their respective rewards are shown
on the y axis.

FIG. 4: Estimate distance to the minimum when the
sample size increases. Comparison of dual annealing
(dark blue) with our methods using 3 different sketch
functions: (orange) random sketch, (green) quadruplets
sketch, (light blue) quintuplets sketch.

for any string z the expectation values ⟨φi,i+1
r ⟩ =

Φi,i+1
x TtSfR satisfy:

⟨φi,i+1
r′ ⟩ ≥ ⟨φi,i+1

z ⟩.

Therefore, solvers of Problem II (like Algorithm 1) pro-
motes outputs x∗

II including substrings of r, hence Con-
dition 1 is satisfied. Condition 2 is also expected in the
output x∗

II of Problem II solvers. This comes from the
consistency of the bits in φi,i+1

x1,x2
and φi+1,i+2

x2,x3
— in the

correct ordering bit x2 is shared. In the opposite or-
der, x3 and x1 cannot always be shared, and the bits
x3x1 may not be among preferred substrings of r. The
right order is also expected based on the effect of thresh-
olding. It guaranties that in all addresses of randomly

selected lines of fR, if r1r2 is found in position i, i+1 in
any of the lines the probability that r3 follows is high or
increases with increasing threshold (this property is dis-
cussed in Appendix B). This in turn is reflected in high
values of both the correlation φi,i+1

x1,x2
and φi+1,i+2

x2,x3
. The

thresholding argument penalizes the incorrect order of
the correlation functions. Moreover, it penalizes strings
with repeated subsings r1r2 not followed by r3.
Therefore, we argue that Algorithm 1 which formally

solves Problem II satisfies the minimum requirements of
solver of Problem I. Thus, the output x∗

II of Algorithm
1 is also, with high probability, a solution of Problem I,
as confirmed in the numerical simulations.
The arguments presented here are focused on provid-

ing an understanding based on simplified assumptions
including a single rule of size three. The generalization
for multiple different rules which is still confirmed by the
numerical tests is in many cases a complicated problem.
The rigorous proof can go along the same line of rea-
soning. However, calculating related probabilities rigor-
ously can require solving counting satisfying assignments
of logical formulas which are #P problems. Comput-
ing upper and lower bounds on the success probability
remains an open problem.

VI. STABILITY AND UNIQUENESS

In what follows, we support the justification of Algo-
rithm 1 with additional results demonstrating its robust-
ness with respect to the choice of the sample and its
responsiveness to small changes of the rules. These argu-
ments justify the stability under sampling and uniqueness
of the solution of Problem I and Problem II for a specific
set of rules.

A. Moment concentration—Stability

Let R be a given set of rule and fR(x) its associated
objective function. Let Φ be a random linear sketching
function. Let {x(i)}i∈I be a sample of size n from the
uniform distribution.

Theorem 1. [Moment concentration]
We call y = E[Φ(fR(x))] the ”true moment” of the

function fR and ŷn = 1
n

∑
Φ(fR(x(i))) the estimated

moment of the function fR.
The following inequality holds for any y and ŷn:

P(|y − ŷn| ≤ ϵ) ≥ 1− σ2

ϵ2n
(9)

where σ2 = Var[Φ(fR(x))] and ϵ > 0 is a positive con-
stant.

See Appendix C 1 for the proof.

The value ŷn is also called a Monte Carlo estimation
of y.

8

In our algorithm, the sketching function is replaced by
a linear map computing M distinct generalized moments.
Thus, Theorem 1 can be generalized, using the triangle
inequality, as follows:

P(ŷn ∈ Bϵ) ≥ 1− Tr{Σ}
ϵ2n

, (10)

where Tr{Σ} is the sum of the variances associated with
each sketching function and Bϵ is the M dimensional ball
centered at y of radius ϵ (which generalized |y− ŷn| ≤ ϵ).

Now looking at Theorem 1 (or equation (10) for the
general case), implies that there are two ways to increase
the probability of concentration for a given ϵ > 0. The
first one, however not desirable in our case, would be to
increase the sample size n. Indeed, sampling from our
objective function is assumed to be costly and we want
to limit the number of calls. The second way would re-
quire to reduce the variance σ2. In fact, if one can find a
similar function to fR where the maximum is preserved
but whose variance is slightly lowered, one could increase
the probability to concentrate. Such a function could be
found by thresholding the original function. In conse-
quence, we can show that a clever use of thresholding
usually results in lowering the variance, and thus achieves
our goal.

We define a thresholded moment y(t) = E[Φ(TtfR(x))],
where Tt is the thresholding operator which sets every
value lower than t to 0, i.e.

Tt : x 7→

{
x if x ≥ t

0 else
.

For the rest of the section, we assume that the threshold
parameter is not too large in such a way that the thresh-
olded moment y(t) would at any time remain close to the
real moment y.

Theorem 2. [Threshold increases probabilities]

Let σ(t)2 = Var[Φ(TtfR(x))] be the variance of the
thresholded function. Recall, σ2 is the variance of the
original function fR.

There exists a value t for the thresholding parameter
for which the variance decreases:

σ(t)2 ≤ σ2 (11)

Moreover, for any k > 0 and such that 1− 1
k2 ≥ 1− σ2

ϵ2n ,
there exists a parameter t such that:

P(ŷn ∈ Bϵ) ≥ 1− 1

k2
≥ 1− σ2

ϵ2n
(12)

which improves the bound on P(ŷn ∈ Bϵ) increasing each
probability.

See Appendix C 2 for the proof.

From now on, rather than looking at the probability to
find ŷn in a given radius ϵ, we focus on radius sizes having

the same probability bound for different sets of rules.

Let k > 0 and we define ϵ(t) to be ϵ(t) = kσ(t)
√
n

because

Theorem 1 needs to hold. This means the value of ϵ(t)

now changes as σ(t) decreases (when threshold increases).

Theorem 3. [Arbitrary closeness]
Let Ri be a given set of rules and ŷn(Ri) be the mo-

ments computed from the function fRi
. Let ϵ(t)(Ri) the

radius of the ball Bϵ(t)(Ri) that satisfies

P(ŷn(Ri) ∈ Bϵ(t)(Ri)) ≥ 1− 1

k2
. (13)

Then, there exists D(t) ∈ R+ such that

P(ŷn(Ri) ∈ BD(t)/2) ≥ 1− 1

k2
(14)

where D is common to all Ri and is given by :

D(t) = 2max
Ri

{ϵ(Ri)}. (15)

Moreover, D(t) becomes arbitrary small as t increases.

Proof. Because for each set of rules the moments concen-
trate in a ball of radius ϵ(Ri), then they also all belong to
the ball of radius D(t)/2. From a corollary of Theorem 2,
if k is fixed then ϵ decreases with thresholding for any set
of rules. So D(t) can go arbitrary small as the threshold
parameter changes.

From Theorem 3, we conclude that thresholding the
objective function fR allows for a reduction of the vari-
ance and thus a better concentration of the moments.
Moreover, an interesting property of thresholding is that
it can commute with sampling; indeed, a threshold ap-
plied on the value sampled from fR is equivalent to
sampling from the function fR after it was thresholded.
Thus, it makes it practical to apply threshold on the
samples rather than the full function, allowing to benefit
from the concentration in our method.

B. Rules distinguishability—Uniqueness

In this section, we will show that the distinguishabil-
ity between two rules embedded by FN , as described in
Section II, can be increased arbitrary by increasing N .
To do so, we will study the transform FN that embeds
the rules into the optimization space and was defined in
equation 2.
Let’s start with some properties of the transform FN :

Claim 1. Given a string a (a rule) of size k:

1. ∥FN (a)∥ ≥ 0

2. Fk = id (if n = k, the transform is the identity),
i.e., Fk(a) = a.

3. FN can be written as a 2N ×2k rectangular matrix.

9

The proofs of Claim 1 are trivial. Additional properties
of the FN Transform can be found in Appendix E
From the properties of Claim 1, we now prove the follow-
ing two lemma.

Lemma 1.

FN (a) = FN (b) ⇐⇒ a = b (16)

See Appendix D1 for the proof.

Lemma 2. When a ̸= b,

∥Fk+l(a)− Fk+l(b)∥22

≥


2l+1

(
3

5
l − 1

9
−

4
3k + 2

3 l +
20
9

2k−2

)
(k : even)

2l+1

(
3

5
l − 1

9
−

5
3k + 1

3 l +
16
9

2k−2

)
(k : odd)

See Appendix D2 for the proof.
Lemma 1 shows the injectivity of the FN transform,

meaning that two distinct rules necessarily have different
transforms. Lemma 2 expresses the separation between
the transform of different rules in the ℓ2 space. It shows
that two distinct rules are necessarily apart by a distance
that increases exponentially with the parameter N deter-
mining the size of the optimization space.

Theorem 4. [Rules separations]
For any a, b ̸= a ∈ {0, 1}k and for any d ≥ 0, there

exists N such that

∥FN (a)− FN (b)∥2 ≥ d.

Proof. We combine both previous lemmas. Lemma 2 tells
us that the distance between a and b increases exponen-
tially when N grows. Thus, for any d ≥ 0, there exists
N such that ∥FN (a)− FN (b)∥2 ≥ d.

Theorem 5. [Moments arbitrary distance]

Let Φ : R2N → RM be a map computingM generalized
moments of the function π whose density is fR. Assume
Φ follows the Restricted Isometry Property (RIP). For
any a, b ̸= a ∈ {0, 1}k and for any D ≥ 0, there exists N
such that:

∥Φ(FN (a))− Φ(FN (b))∥2 ≥ D (17)

Proof. Since Φ respects the RIP, we have:

(1− δ)∥FN (a)− FN (b)∥2 ≤ ∥Φ(FN (a)− FN (b))∥2
≤ (1 + δ)∥FN (a)− FN (b)∥2

where δ ∈ [0, 1] is the fixed Restricted Isometry constant
associated to Φ. In particular:

∥FN (a)− FN (b)∥2 ≤ 1

1− δ
∥Φ(FN (a)− FN (b))∥2 (18)

However, from Theorem 4 we know that there exists N
such that:

d ≤ ∥FN (a)− FN (b)∥2 (19)

for any d. And so, for the same N , and because Φ is
linear:

d(1− δ) ≤ ∥Φ(FN (a))− Φ(FN (b))∥2

Because this holds for any d, one just need to chose it
in such a way that D/(1 − δ) ≤ d to get the desired
property.

Theorem 4 and Theorem 5 are the main results of this
section. Theorem 4 tells us that distinct rules are sepa-
rated in the transformed space, i.e. optimization space,
by an arbitrary distance as long as the space is large
enough. Theorem 5 extends this property to any gener-
alized moment computed from these rules as long as the
sketching function Φ respects the RIP.

C. Final arguments

We know from Theorem 5 that the moments computed
from distinct rules can be arbitrary distant which reads:

∥Φ(FN (a))− Φ(FN (b))∥ ≥ D. (20)

Because the optimization problem is fixed, so is the di-
mension of the space, meaning N is given. We chose for
D appearing in Theorem 5 the greatest possible values
that N satisfies. Next having a look at Theorem 3, we
know that there exist D(t) such that for both set of rules
{a} and {b}:

P(ŷn ∈ BD(t)/2) ≥ 1− 1

k2
. (21)

and we chose k for the right hand side to be a large prob-
ability. Moreover, D(t) = 2max{ϵ(t)(a), ϵ(t)(b)} is de-
creasing with the threshold parameter t. Thus, we chose
t for D(t) to be smaller than D. We end up with the
situation where moments ya and yb from different rules
are separated by distance D and each Monte-Carlo ap-
proximation of these moments lies, with high probability
1 − 1

k2 , within the ball of radius D/2. One clearly sees
that no approximation of a moment from the rule a can
be misunderstood as a moment from the rule b since they
live in different balls that do not intersect.
Since our approximate moments contains features of

the true distribution it should be, in principle, possible
to recover features of it, such as its maximum. Remem-
ber, the moment given by any sample and the moments
from the full distribution are all similar. Since we do
not use any specific feature of the sample other than the
sketching function, we will tend to recover solutions that
are representative of the distribution global features and
mostly, when combined with Section V, recover a solu-
tion containing the maximum line. This will work as

10

long as we are not overfitting the sample—too many mo-
ment computed by the sketching function will determine
features of this exact sample rather than global features.

VII. DISCUSSION ON APPLICATIONS AND
QUANTUM COMPUTERS

In Section II we defined combinatorial optimization
problems that are compressible. In Section III we gave an
algorithm to solve such problems and Section IV showed
the performance of our method compared to the best ex-
isting method—dual annealing. Finally, theoretical justi-
fication of this algorithm was discussed in Section V and
Section VI. In this last section, we show that compress-
ible combinatorial problems naturally show up in many
fields by giving two examples. One is the problem of
learning optimal policy in Reinforcement Learning. The
other is the problem of finding the ground state of an
Ising Hamiltonian. Note that compressible problems are
not restricted to these two fields but rather may appear in
other contexts: flow problems, knapsack problem, trav-
eling salesman problem, machine learning, etc. . .

A. Reinforcement Learning

Reinforcement Learning (RL) is a crucial technique in
today’s machine learning due to its central role in several
applications, such as optimal control theory, robotics, or
game theory. It studies the behavior of an agent who aims
to learn the nearly optimal policy for a given task. We
can think of this task as a game. Given the set of game’s
states and actions, the policy dictates the choice of the
next action for a given state. Reinforcement Learning at
its beginning focuses on the exploitation of dynamic pro-
gramming methods as imagined by Richard Bellman. A
typical example is the Q-learning algorithm [25], which
makes use of the Bellman equation to update the so-
called Q-table. However, when the space of states and ac-
tions becomes too large, current methods rely on stochas-
tic principles. A clever use of the so-called policy net-
works and of the stochastic gradient descent allowed for
achieving remarkable results [26]. This approach avoids
the bottleneck of dynamical methods, but remains close
to Bellman’s original ideas; the policy is refined itera-
tively from partial returns until it eventually converges
to nearly optimal solution. Another way to tackle Re-
inforcement Learning tasks are known as Monte-Carlo
methods. In that case, we try to solve the reinforcement
learning task based on complete returns obtained from
full episodes. The name Monte-Carlo comes from the
fact that one is sampling through the space of complete
returns. This is the case of the method we presented in
Section III. Both approaches have benefits and draw-
backs, and the choice of which method to use is problem-
dependent. Let’s consider the following ”game”. At each
step, the agent has to choose between two possible ac-

tions labeled 0 and 1. Only after one complete episode,
which consists of a sequence of N actions, a total re-
ward is granted. The goal is to find a nearly optimal
policy maximizing the total reward. Since one has only
access to the final returns, with the reward mechanism
in each episode acting like a black-box, the use of Monte-
Carlo methods seems reasonable in this context. Thus,
this RL scenario indeed exhibit a problem structure sim-
ilar to the combinatorial optimization of a compressible
function. Our approach can be use here as a competitive
method in a context where policy network could not be
exploited.

B. Ising Hamiltonians and Quantum Computers

The Ising model has been studied by physicist to un-
derstand the behavior of certain phenomena as ferromag-
netism. The energy of a given configuration is given by
the Hamiltonian H of the system. With the emergence
of quantum computing, as well as the needs for simulat-
ing quantum physics, analogy are often made between
Hamiltonians and cost functions. In this context, we
could refer to 1

2 -spins to talk about binary variables and
spin-configuration to talk about a given bit-string. The
Hamiltonian of an Ising spin-chain is given by:

H(σ) = −
∑
i

hiσi −
∑
⟨i,j⟩

Ji,jσiσj (22)

where ⟨i, j⟩ means nearest neighbor pairs of spins. Also
notice that, in typical cases from physics, hi and Ji,j are
independent of the actual configuration of σi and σj but
only linked to relative positions i and j. We will call
this kind of typical Ising Hamiltonians ”linear” since all
coupling terms are linear. The nearest-neighbor case is
solvable by classical computers in polynomial time by us-
ing dynamic programming methods due to its recursive
property when computing the cost of a given configura-
tion. However, this is not the case in more general Ising
problems. Indeed, Ising problems such as frustrated fer-
romagnetic models, spin-glasses, random energy models
or non-linear Ising models are known to be intractable
for classical computers. A random energy Ising is given
by:

H(σ) =
∑
σs∈P

ωsσs (23)

where σs are Pauli-Z strings within the Pauli group P of
given length s pauli strings.

We already made a parallel between such Random En-
ergy Model Ising Hamiltonian and our cost function de-
scribed in section II. Indeed, our method is a new promis-
ing approach to tackle the problem of finding the ground
state of such Ising-like Hamiltonians as no efficient classi-
cal methods are known (and there won’t be if P ̸= NP).
Quantum computers also seem to have a crucial role

to play in combinatorial optimization, especially since so

11

many cost function can me mapped to Ising-like Hamil-
tonians. Indeed, quantum phenomena exhibit struc-
ture from complicated Ising problems—for instance spin-
glass—and even though quantum computers might not
be able to solve the optimization problem in polyno-
mial time (if NP ̸⊂ BQP) [27] they might provide good
heuristics to tackle those kind of optimization problems
(see quantum annealing [6, 7], QAOA [28–30], HVA
[31], Imaginary time evolution [32], dissipative dynam-
ics [33, 34]...)

In this last section, we connect our new results to the
previous work to see how quantum computers can con-
tribute to Monte-Carlo Compressive Optimization. In
our last study, we demonstrated how a quantum com-
puter could improve compressive sensing methods [23].
The method consists in using structured patterns for the
measurement map Φ in such a way that the optimization
step in matching pursuit is reduced to finding the ground
state of an Ising Hamiltonian. One relevant aspect is that
the use of structured pattern allows us to save memory
as we do not need to store an exponentially large random
matrix anymore. Another aspect was that the crucial op-
timization step of the matching pursuit algorithm reduces
to finding the solution of an Ising problem. If the pat-
terns used for Φ corresponded to fixed nearest-neighbor
bits in the binary sequences, the optimization could be
handled by a dynamic programming algorithm, while for
more complex patterns (like patterns corresponding to
distant pairs of bits) the solution can be obtained using a
quantum computer apriori faster than using known algo-

rithms on a classical computer. Indeed, the optimization
for the distant-pairs measurement patterns reduces to a
corresponding spin-glass problem and can be approached
using QAOA or quantum annealing. As these kinds of
systems seem to be quantum mechanical by nature, we
have good reasons to think that quantum computer can
perform better which is in accord with our previous re-
sults.
As it was briefly mentioned above, we can think of

the rules as encoding a random energy Ising problem
with non-linear coupling terms. This is, generally speak-
ing, a really hard problem. However, when applying the
Monte-Carlo Compressive Optimization algorithm with
a sketching function made of structured patterns, we in-
deed map the complex Ising problem into a spin-chain or
spin-glass Ising problem where important features of the
problem such as its optima can be preserved. Moreover,
the mapping is done using a sample of the solutions space,
hence it is computable in reasonable time. This really is
a major phenomenon since the spin-glass or spin-chain
problems are much easier to solve and, in many cases, we
care more about the optima of a function than we do for
its other properties.

ACKNOWLEDGMENTS

This work was supported by JST Moonshot R&D,
Grant No. JPMJMS226C and Grant No. JPMJMS2061,
JST ASPIRE, Grant No. JPMJAP2427, JST COI-
NEXT Grant No. JPMJPF2221, JST SPRING Grant
No. JPMJSP2123.

[1] H. Robbins and S. Monro, The Annals of Mathematical
Statistics 22, 400 (1951), publisher: Institute of Mathe-
matical Statistics.

[2] J. A. Nelder and R. Mead, The Com-
puter Journal 7, 308 (1965), eprint:
https://academic.oup.com/comjnl/article-
pdf/7/4/308/1013182/7-4-308.pdf.

[3] M. J. D. Powell, in Advances in Optimization and Nu-
merical Analysis, edited by S. Gomez and J.-P. Hennart
(Springer Netherlands, Dordrecht, 1994) pp. 51–67.

[4] A. Lucas, Frontiers in Physics 2 (2014),
10.3389/fphy.2014.00005, arXiv:1302.5843 [cond-mat].

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science
220, 671 (1983).

[6] T. Kadowaki and H. Nishimori, Physical Review E 58,
5355 (1998).

[7] M. Ohzeki and H. Nishimori, “Quantum annealing:
An introduction and new developments,” (2010),
arXiv:1006.1696 [cond-mat].

[8] R. Bellman, Bulletin of the American Mathematical So-
ciety 60, 503 (1954).

[9] F. Barahona, Journal of Physics A: Mathematical and
General 15, 3241 (1982).

[10] N. Schuch and J. I. Cirac, Phys. Rev. A 82, 012314
(2010).

[11] D. Delahaye, S. Chaimatanan, and M. Mongeau, in

Handbook of Metaheuristics, edited by M. Gendreau and
J.-Y. Potvin (Springer International Publishing, Cham,
2019) pp. 1–35.

[12] E. Candes, J. Romberg, and T. Tao, IEEE Transactions
on Information Theory 52, 489 (2006).

[13] D. Donoho, IEEE Transactions on Information Theory
52, 1289 (2006).

[14] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin,
Constructive Approximation 28, 253 (2008).

[15] S. Foucart and H. Rauhut, in A Mathematical Introduc-
tion to Compressive Sensing , edited by S. Foucart and
H. Rauhut (Springer, New York, NY, 2013) pp. 61–75.

[16] R. Gribonval, G. Blanchard, N. Keriven, and Y. Traon-
milin, “Compressive Statistical Learning with Random
Feature Moments,” (2021), arXiv:1706.07180 [stat].

[17] N. Metropolis and S. Ulam, Journal of the American Sta-
tistical Association 44, 335 (1949), publisher: [American
Statistical Association, Taylor & Francis, Ltd.].

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, The Journal of Chemical
Physics 21, 1087 (1953).

[19] Y. Xiang, D. Y. Sun, W. Fan, and X. G. Gong, Physics
Letters A 233, 216 (1997).

[20] C. Tsallis, Journal of Statistical Physics 52, 479 (1988).
[21] C. Tsallis and D. A. Stariolo, Physica A: Statistical Me-

chanics and its Applications 233, 395 (1996).

12

[22] K. V. Jacob, E. Kaur, W. Roga, and M. Takeoka, Phys.
Rev. A 102, 032403 (2020).

[23] B. Chevalier, W. Roga, and M. Takeoka, Physical Re-
view A 110, 062410 (2024), publisher: American Physi-
cal Society.

[24] W. K. Hastings, Biometrika 57, 97 (1970).
[25] C. J. C. H. Watkins and P. Dayan, Machine Learning 8,

279 (1992).
[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,

J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wier-
stra, S. Legg, and D. Hassabis, Nature 518, 529 (2015),
publisher: Nature Publishing Group.

[27] S. Aaronson, “NP-complete Problems and Physical Re-
ality,” (2005), arXiv:quant-ph/0502072.

[28] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser,
“Quantum Computation by Adiabatic Evolution,”
(2000), arXiv:quant-ph/0001106.

[29] E. Farhi, J. Goldstone, and S. Gutmann, “A Quan-
tum Approximate Optimization Algorithm,” (2014),
arXiv:1411.4028 [quant-ph].

[30] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D.
Lukin, Physical Review X 10, 021067 (2020).

[31] C.-Y. Park and N. Killoran, Quantum 8, 1239 (2024),
publisher: Verein zur Förderung des Open Access Pub-
lizierens in den Quantenwissenschaften.

[32] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin,
and X. Yuan, npj Quantum Information 5, 1 (2019).

[33] T. S. Cubitt, “Dissipative ground state preparation
and the Dissipative Quantum Eigensolver,” (2023),
arXiv:2303.11962 [quant-ph].

[34] Y. Zhan, Z. Ding, J. Huhn, J. Gray, J. Preskill,
G. K.-L. Chan, and L. Lin, “Rapid quantum ground
state preparation via dissipative dynamics,” (2025),
arXiv:2503.15827 [quant-ph].

Appendix A: Proof of Proposition 1—Larger momemnts of substrings of the rules

Proof. Formally,

φi,i+1
x = (Φi,i+1

x)TFN (r),

where

Φi,i+1
x = (11 ⊗ . . . ⊗ 1i−1 ⊗ x⊗ 1i+2 ⊗ . . . ⊗ 1N)

and

FN (r) = r ⊗ 14 ⊗ . . . ⊗ 1N + 11 ⊗ r ⊗ 15 ⊗ . . . ⊗ 1N ...+ 11 ⊗ . . . ⊗ 1N−3 ⊗ r.

i) For any position 2 ≤ i ≤ N − 2,
For a measurement bits x1x2 to match the rules at those positions, there are four possibilities shown in Table I:

• If x1x2 matches either r1r2r1r2r2r3 → the energy increases by 2N−3

• If x1 matches r3 → the energy increases by 2N−4

• If x2 matches r1 → the energy increases by 2N−4

• Any other case → the energy increases by 0

So in total, any sketching pattern that are substring of a rule (r1r2 or r2r3) will bring 2N−3 energy. The other
most energetic case is x1x2 = r3r1 which brings 2× 2N−4 = 2N−3 energy (same amount).

All other cases bring less energy. So we have indeed for all subtring r and any z mi,i+1
r ≥ mi,i+1

z . If it’s true for
all, then it’s also true for at least one.

ii) We study matching at the beginning and at the end
a) matching in position 1,2, (Table II).

. . x1 x2 . .
r1 r2 r3 . . .
. r1 r2 r3 . .
. . r1 r2 r3 .
. . . r1 r2 r3

TABLE I: Configurations in which two bits x1 and x2 inside a string can mach the rule r1r2r3.

13

x1 x2
r1 r2 r3 . . .
. r1 r2 r3 . .
. . r1 r2 r3 .
. . . r1 r2 r3

TABLE II: Configurations in which two bits x1 and x2 at the beginning of a string can mach the rule r1r2r3.

. . . . x1 x2

r1 r2 r3 . . .
. r1 r2 r3 . .
. . r1 r2 r3 .
. . . r1 r2 r3

TABLE III: Configurations in which two bits x1 and x2 at the end of a string can mach the rule r1r2r3.

• If x1x2 match r1r2 → the energy increases by 2N−3

• If x2 matches r1 → the energy increases by 2N−4

• Any other case → the energy increases by 0

So there is one substring r , namely r1r2, that brings more energy than any other string.
The other substring all bring 0 energy for this position.
b) matching in position N-1,N (Table III).

• If xxm2 match r2r3 → the energy increases by 2N−3

• If x1 matches r3 → the energy increases by 2N−4

• Any other case → the energy increases by 0

So there is one substring r , namely r2r3, that brings more energy than any other string.
The other substring all bring 0 energy for this position.
Part (iii) easily follows from (ii).

For the problems with multiple rules the above reasoning should be completed by multiplying powers of two by
appropriate factors proportional to values of rewards. The statements regarding the ordering of < φi,i+1

x > for x
belonging to different rules, or appearing in different rules, or not belonging to any of them is more complicated.
However, similar arguments to Propositions 1 supported by numerical simulations allow us to conjecture that Algo-
rithm 1 assigns higher values ⟨φi,i+1

x ⟩ to pairs of bits x which are parts of the rules.

Appendix B: Probability of realizing the rules at a given position knowing it appears q times

We want to compute the probability for a rule of size m to realize after matching m− 1 bits given that the strings
of interest all contains exactly q times the rules. We compute for a simple example as it is already complicated. In
our cases we take the rule 001 of length m = 3 and the string contains a single time q = 1 the rule.
We will proceed as follow:

1. Count the string that contains a single 001

2. Belong them estimate the number of that contains L times 00 as a substring. The probability in that string to
find 001 after 00 is given by 1

L

3. Compute the expectated probability for all L

14

1. Counting the string that contains a single 001

We start by counting the string that contains at least one 001 as a substring. We want to count
all the strings of a given length N which contains at least one ‘001‘ substring. We define EN =
{s — s has at least one substring equals 001 and |s| = N} The goal is to compute its cardinality eN := #EN .

Claim 2. There is an explicit expression for eN given by

eN =

⌊N/3⌋∑
k=1

(−1)k+1

(
N − 2k

k

)
2N−3k (B1)

Proof. Let Ai = {s — s have its si substring equals to 001}. By definition we have EN =
⋃N−2

i=1 Ai. We now use the
inclusion-exclusion principle (see below) to get

eN =
∑

̸=J⊆{1,...,n}

(−1)|J|+1#
⋂
j∈J

Aj

Because the string ‘001‘ does not overlap with itself: if i, j ∈ J are less than 3 apart (length of the substring) that is
|i − j| < 3, then #

⋂
j∈J Aj = 0 for this given J . So contribution only comes when choosing the element of J to be

at least 3 apart. Let’s consider all the J of a given size k ex: k = 1 then J = {1} or {2} . . . For a given k, we fix 3k
bits in the string s and there are N − 3k free bits. This give a cardinality of #Aj = 2N−3k, for j ∈ J and #J = k
(elements chosen 3 apart). Finally the number of ways to chose k starting position for ‘001‘ in s of length N is given

by
(
N−2k

k

)
. All together we have

eN =

⌊N/3⌋∑
k=1

(−1)k+1

(
N − 2k

k

)
2N−3k

Because all sets Aj have the same cardinality (2N−3k) for a given k, we just need to count them and multiply their
contributions. This is a common situation when the result depends only on the number of sets in the intersection and
not on which sets appears.

We can now count the N length strings which contains a single time 001 as a substring. We want to com-
pute the number of string of length N which contains ‘001‘ a single time as a substring. We call SN =
{s — s has exactly one substring equals 001 and |s| = N} The goal is to compute its cardinality sN := #SN

Claim 3. There exists a recursive formula for sN given by

sN+1 = 2sN − sN−2 + 2N−2 − eN−2 (B2)

where

eN−2 =

⌊(N−2)/3⌋∑
k=1

(−1)k+1

(
N − 2(k + 1)

k

)
2N−3k−2 (B3)

Proof. First we compute the first terms: s1 = 0 and s2 = 0 s3 = 1 because S3 = {001} s4 = 4 because S4 =
{001∗, ∗001} Going from N to N + 1 we add strings to SN+1 from two sources:

1. For all string m ∈ SN we can build a new string m′ = m · ∗ If m doesn’t end by ‘00‘ then m′ contains a single
time ‘001‘ because m itself contains a single time ‘001‘. Because for m ∈ SN , if m end by ‘00‘ the others N − 2
bits are free and should contains ‘001‘ a single time. The number of string m ending by ‘00‘ is exactly sN−2.
The total contribution is then 2sN − sN−2.

2. We need to add all the other strings that end by ‘001‘ and did not contains any ‘001‘ before. Because the last
3 bits are fixed to ‘001‘ the remaining N − 2 bits are free and should not contain any ‘001‘ . Thus there are
#(string of length N-2)−eN−2 such strings (where eN is defined in the previous section) The total contribution
is then 2N−2 − eN−2.

Combining (1) and (2) achieves the proof.

15

Claim 4. There exists an explicit formula for sN given by

sN =

⌊N/3⌋∑
k=1

(−1)k+1

(
N − 2k

k

)
k2N−3k (B4)

Proof. (by induction) We want to show the following property

(hN) sN =

⌊N/3⌋∑
k=1

(−1)k+1

(
N − 2k

k

)
k2N−3k

Initialization : Using the formula we can check

1. s1 = 0

2. s2 = 0

3. s3 = 1

Induction :
Suppose (hN) is true for N , let’s show (hN+1) is also Using the recursive formula from Claim 3 we have

sN+1 = 2sN − sN−2 + 2N−2 − eN−2

by hypothesis on sN

sN+1 = 2

⌊N/3⌋∑
k=1

(−1)k+1

(
N − 2k

k

)
k2N−3k (B5)

−
⌊N−2/3⌋∑

k=1

(−1)k+1

(
N − 2(k + 1)

k

)
k2N−3k−2 (B6)

+ 2N−2 (B7)

−
⌊(N−2)/3⌋∑

k=1

(−1)k+1

(
N − 2(k + 1)

k

)
2N−3k−2 (B8)

We rewrite line (1) as

K∑
k=1

(−1)k+1

(
N − 2k

k

)
k2N+1−3k

= (N − 2)2N−2 +

K∑
k=2

(−1)k+1

(
N − 2k

k

)
k2N+1−3k

adding with line (3) we get

(N − 1)2N−2 +

K∑
k=2

(−1)k+1

(
N − 2k

k

)
k2N+1−3k

Let’s call K = ⌊N/3⌋
We distinguish two cases:

1. ⌊(N + 1)/3⌋ = K

2. ⌊(N + 1)/3⌋ = K + 1

16

Case 1:
Step 1: We add lines (2) and (4) together. Because ⌊(N + 1)/3⌋ = K thus ⌊(N − 2)/3⌋ has to be K − 1.

−
K−1∑
k=1

(−1)k+1

(
N − 2(k + 1)

k

)
2N−2−3k(k + 1)

Let k′ = k + 1 (k = k′ − 1) so the sum become

−
K∑

k′=2

(−1)k
′
(
N − 2k′

k′ − 1

)
2N+1−3k′

k′

The term (−1) in front can be inserted to change the alternating term: (k′ is written as k again for readability)

K∑
k=2

(−1)k+1

(
N − 2k

k − 1

)
2N+1−3kk

Using Pascal formula for binomial coefficient we have
(
N−2k
k−1

)
=
(
N+1−2k

k

)
−
(
N−2k

k

)
K∑

k=2

(−1)k+1

(
N + 1− 2k

k

)
2N+1−3kk −

K∑
k=2

(−1)k+1

(
N − 2k

k

)
2N+1−3kk

Step 2: We add everything together (1) + (2) + (3) + (4)

(N − 1)2N−2

+

K∑
k=2

(−1)k+1

(
N − 2k

k

)
k2N+1−3k

+

K∑
k=2

(−1)k+1

(
N + 1− 2k

k

)
2N+1−3kk

−
K∑

k=2

(−1)k+1

(
N − 2k

k

)
2N+1−3kk

First and last lines contains the same sums so they cancel out

(N − 1)2N−2 +

K∑
k=2

(−1)k+1

(
N + 1− 2k

k

)
2N+1−3kk

Step 3: Notice (N − 1)2N−2 is the term when k = 1 of the right sum

(−1)1+1

(
N + 1− 2 · 1

k

)
2N+1−3·1 · 1 = (N − 1)2N−2

Step 4: In the end we get

K∑
k=1

(−1)k+1

(
N + 1− 2k

k

)
k2N+1−3k

which conclude the induction.
Case 2:
Step 1: We add lines (2) and (4) together. Because ⌊(N + 1)/3⌋ = K + 1 thus ⌊(N − 2)/3⌋ has to be K.

−
K∑

k=1

(−1)k+1

(
N − 2(k + 1)

k

)
2N−2−3k(k + 1) (2) + (4)

17

Let k′ = k + 1 (k = k′ − 1) so the sum become

−
K+1∑
k′=2

(−1)k
′
(
N − 2k′

k′ − 1

)
2N+1−3k′

k′

The term (−1) in front can be inserted to change the alternating term: (k′ is written as k again for readability)

K+1∑
k=2

(−1)k+1

(
N − 2k

k − 1

)
2N+1−3kk

Using Pascal formula for binomial coefficient we have
(
N−2k
k−1

)
=
(
N+1−2k

k

)
−
(
N−2k

k

)
K+1∑
k=2

(−1)k+1

(
N + 1− 2k

k

)
2N+1−3kk −

K+1∑
k=2

(−1)k+1

(
N − 2k

k

)
2N+1−3kk

Step 2: We add everything together (1) + (2) + (3) + (4)

(N − 1)2N−2

+
K∑

k=2

(−1)k+1

(
N − 2k

k

)
k2N+1−3k

+

K+1∑
k=2

(−1)k+1

(
N + 1− 2k

k

)
2N+1−3kk

−
K+1∑
k=2

(−1)k+1

(
N − 2k

k

)
2N+1−3kk

First and last lines contains the same sums except the last term so they partially cancel out

(N − 1)2N−2 +

K+1∑
k=2

(−1)k+1

(
N + 1− 2k

k

)
2N+1−3kk + (−1)K+1

(
N − 2(K + 1)

K + 1

)
2N+1−3(K+1)(K + 1)

Step 3: Notice (N − 1)2N−2 is the term when k = 1 of the right sum

(−1)1+1

(
N + 1− 2 · 1

k

)
2N+1−3·1 · 1 = (N − 1)2N−2

Notice as well that the coefficient binomial of the last term is
(
N−2K−2

K+1

)
where K = ⌊(N − 1)/3⌋. So by definition

N + 1 = 3K + r where 0 ≤ r ≤ 2. The upper term becomes N − 2K − 2 = 3K + r− 1− 2K − 2 = K + r− 3 because
r ≤ 2 we have K + r − 3 ≤ K − 1. So we notice the upper term of the binomial coefficient is greater than the lower
term because N − 2K − 2 ≤ K − 1 ≤ K + 1 so in the end

(
N−2K−2

K+1

)
= 0. Step 4: In the end we get

K+1∑
k=1

(−1)k+1

(
N + 1− 2k

k

)
k2N+1−3k

which conclude the induction.

2. Counting the number string with exactly L 00 in a string that contains a single 001

We define ZL = {s ∈ SN |s as exactly L substrings equal 00}. The goal is to compute the its cardinality zL = #ZL.

Claim 5. There is an explicit expression for zL given by

zL =

N−2∑
k=1

(
fk−L+1fN−k +

L∑
ℓ=2

fk−L+ℓfN−ℓ−k−1

)
(B9)

where fk is the k-th term of the Fibonacci sequence (or 0 for negative k).

18

The following lemma is used for the proof of Claim 5

Lemma 3. Let AN = {s ∈ ΣN — s does not contains any substrings equal to 00}. Let aN = #AN .

Then aN = fN+2 where

{
fn if n ≥ 1 is the n-th term of the fibonacci sequence.

0 else

In addition, let A∗
N = {s ∈ AN — s does not end by 1}. Let a∗N = #A∗

N .
Then a∗N = fN+1.

Proof. Let’s define A0
N and A1

N as the subsets of AN that ends respectively by a 0 and a 1. We call a0N and a1N their
cardinality. We have AN = A0

N ∩A1
N and aN = a0N + a1N .

Let’s compute the first terms for each of them:

A1 = {0, 1} A0
1 = {0} A1

1 = {1}
A2 = {01, 10, 11} A0

2 = {10} A1
2 = {01, 11}

A3 = {010, 011, 101, 110, 111} A0
3 = {010, 110} A1

3 = {101, 011, 111}

As well as the cardinality:

a1 = 2 a01 = 1 a11 = 1

a2 = 3 a02 = 1 a22 = 2

a3 = 5 a03 = 2 a13 = 3

One can see the Fibonacci sequence appearing, let’s prove it formally.

• For each s ∈ A0
N , the N + 1 length string can only end by 1 to avoid 00 substrings. Thus a1N+1+ = a0N

• For each s ∈ A1
N , the N + 1 length string can end by both 0 and 1. Thus a1N+1+ = a1N and a0N+1+ = a1N

All in all, this reads: {
a1N+1 = a0N + a1N
a0N+1 = a1N

(B10)

Let’s compute the term for N + 2:

aN+2 = a0N+2 + a1N+2

= a1N+1 + a0N+1 + a1N+1

= aN+1 + a0N + a1N
= aN+1 + aN

and

a∗N+2 = a0N+2

= a1N+1

= a1N + a0N

= a0N+1 + a0N
= a∗N+1 + a∗N

So both (aN) and (a∗N) are described by Fibonacci sequences but with different first terms. Indeed, aN start at
a1 = 3 so aN = fN+2. On the other hand, a∗N start at a∗1 = 1 then a∗2 = 2 so a∗N = fN+1.

Proof. of Claim 5 We start by computing the specific case of z2. Because s ∈ Z2 has a single substring equal 001, we
can assume its starting position to be 1 ≤ k ≤ N

s = 0
↑
k

01

19

Case 1:
Assume we have a zero in position k − 1 so we have two 00 substrings.

s =︸ ︷︷ ︸
k−2

00
↑
k

01︸ ︷︷ ︸
N−(k+2)

The string s ∈ Z2 is of the form s = w1 · 0001 · w2 where:

• w1 ∈ A∗
k−2

• w2 ∈ AN−(k+2)

So the number of all such strings s is a∗k−2aN−k−2 = fk−1fN−k.
Case 2:
Assume we have two zeros starting in position N − 1 so we have two 00 substrings in total.

s =︸ ︷︷ ︸
k−1

0
↑
k

01︸ ︷︷ ︸
N−2−(k+2)

00

The string s ∈ Z2 is of the form s = w1 · 001 · w2 · 00 where:

• w1 ∈ A∗
k−1

• w2 ∈ A∗
N−k−4

So the number of all such strings s is a∗k−1a
∗
N−k−4 = fk−1fN−k−3.

There are no other cases because s contains a single 001 so if any other places contains 00, following by a 1 bring to
case 1 and following by 00 increase the number of 00 substrings by one, making it not belong to z2. We just need to
sum over all starting position k to get the expression of z2:

z2 =

N−2∑
k=1

fk−1fN−k + fkfN−k−3 (B11)

We now do the general case of zL for a given L such that 2 ≤ L ≤ N − 1. As before, because s ∈ ZL has a single
substring equals 001, we can assume its starting position to be 1 ≤ k ≤ N

s = 0
↑
k

01

We now reproduce the same two previous case and add intermediates ones.
Case 1:
Assume we have L− 1 zeros in positions k − L to k − 1 so we have exactly L substrings equals 00.

s = . . .︸︷︷︸
k−L

0 . . . 0︸ ︷︷ ︸
L−1

0
↑
k

01︸ ︷︷ ︸
N−(k+2)

The string s ∈ ZL is of the form s = w1 · 0 . . . 0︸ ︷︷ ︸
L−1

001 · w2 where:

• w1 ∈ A∗
k−L

• w2 ∈ AN−(k+2)

So the number of all such strings s is a∗k−LaN−(k+2) = fk−L+1fN−k.
Case 2:
Assume we have L zeros starting in position N − L+ 1 so we have L substrings equals 00 in total.

s =︸ ︷︷ ︸
k−1

0
↑
k

01 . . .︸︷︷︸
N−L−k−2

0 . . . 0︸ ︷︷ ︸
L

The string s ∈ ZL is of the form s = w1 · 001 · w2 · 0 . . . 0︸ ︷︷ ︸
L

where:

20

• w1 ∈ A∗
k−1

• w2 ∈ A∗
N−L−k−2

So the number of all such strings s is a∗k−1a
∗
N−L−k−2 = fkfN−L−k−1.

Intermediates Cases:
We can go incrementally from case 1 to case 2 by removing one zero at the head of the 0 . . . 0︸ ︷︷ ︸

L−1

string and adding one

(except at the first time where we need two) at the end of the string s.

. . .︸︷︷︸
k−L

0 . . . 0︸ ︷︷ ︸
L−1

0
↑
k

01︸ ︷︷ ︸
N−(k+2)

. . .︸︷︷︸
k−L

0 . . . 0︸ ︷︷ ︸
L−2

0
↑
k

01︸ ︷︷ ︸
N−2−(k+2)

00

. . .︸︷︷︸
k−L

0 . . . 0︸ ︷︷ ︸
L−3

0
↑
k

01︸ ︷︷ ︸
N−3−(k+2)

000

...

.︸ ︷︷ ︸
k−L

00
↑
k

01 . . .︸︷︷︸
N−(L−1)−k−2

0 . . . 0︸ ︷︷ ︸
L−1

.︸ ︷︷ ︸
k−1

0
↑
k

01 . . .︸︷︷︸
N−L−k−2

0 . . . 0︸ ︷︷ ︸
L

we see the pattern being revealed, each time we remove one zero before 001 and add one more at the end. This can
be written as the next expression:

fk−L+1fN−k +

L∑
ℓ=2

fk−L+ℓfN−ℓ−k−1 (B12)

where the first term in front reduces to Case 1 (it is a bit different to others since we add two zeros next), all the
intermediate cases are computed until ℓ = L which is Case 2. Finally, we sum over all starting positions k which
achieves the proof.

3. Computing the probability

Theorem 6. The probability PN for the rule 001 of size m = 3 to realize after matching m − 1 = 2 bits 00 given
that the strings of interest all contains exactly q = 1, a single times the rule is given by

PN =

N−1∑
L=1

1

L

zL
SN

(B13)

where the expression of SN is given in Claim 4 and the one of zL is given in Claim 5

This laborious development gives us in the end a literal expression for the computation of PN . The function is
strictly decreasing and we are able to check that for the string containing a single time 001 as a substring, the
probability to find 001 after 00 is greater than 1

2 for N ≤ 25. The upper bound N = 25 is expected to increase
whenever we are interested to the string containing q times 001 for q ≥ 2. This way, we have an intuition of the fact
that a given rules has chance greater than 1

2 to realize after matching m − 1 bits when we are guarantee that the
string contains exactly q times the rule and N is not too large. This probability even increases for larger q.

21

Appendix C: Properties of the moment concentration

1. Proof of Theorem 1

Proof. [Moment concentration] First, one uses the Chebyshev’s inequality (the distance of a sample to its mean) and
gets

P(|ŷn − ⟨ŷn⟩| ≥ kσ̃) ≤ 1

k2

where k ∈ N and σ̃2 = Var(ŷn).
Next σ̃ and σ can be related as follows:

Var(ŷn) = Var[
1

n

∑
i

Φ(fR(x(i)))]

=
1

n2
Var[

∑
i

Φ(fR(x(i)))]

=
1

n2
· n ·Var[Φ(fR(x(i)))]

=
1

n
Var[Φ(fR(x))]

=
σ2

n
,

where we successively use the properties of the variance of the sum of independent random variables.
Using now the property of Monte-Carlo estimation, we have ⟨ŷn⟩ = y. So we can rewrite the first expression as:

P(|ŷn − y| ≥ kσ√
n
) ≤ 1

k2
.

Using the law of total probability, we can change the inequality into:

P(|ŷn − y| ≤ kσ√
n
) ≥ 1− 1

k2
.

Finally, let ϵ = kσ√
n
and substitute k to get the desired result:

P(|y − ŷn| ≤ ϵ) ≥ 1− σ2

ϵ2n
.

2. Proof of Theorem 3

Lemma 4. [Concentration Bound with Thresholding]

Let σ(t)2 = Var[Φ(TtfR(x))] be the variance of the thresholded function. The following expression holds:

σ(t)2 = p(t)σ2
1(t) + µ2

1(t)(1− p(t)p(t) (C1)

where p(t) is the probability to sample from the non-zero region of TtfR after thresholding, µ1 and σ2
1 are respectively

the mean and variance of this non-zero region.

Proof. To express σ(t)2 we use the law of total variance. For a given t, let’s divide the space of Φ(TtfR(x)) into its zero
part (G = 0) and its non-zero part (G = 1). The law of total variance allows us to write the variance Var[Φ(TtfR(x))]
(which we will call Var(X) for convenience) as follows:

Var(X) = E[Var[X|G]] + Var[E[X|G]],

where G is our grouping variable separating the zero part from the non-zero part. Assume

22

• µ0 = 0, σ0 = 0

• µ1, σ1

are the mean and variance of respectively the zero and non-zero parts. The first term of Var(X) (within group
variance) turns into E[Var[X|G]] = p1σ

2
1 .

The second term (between group variance) can be computed as well: we have µ = p0µ0 + p1µ1 for the total mean

Var[E[X|G]] = p0(µ0 − µ) + p1(µ1 − µ)

= p0(µ0 − µ) + p1(µ1 − µ)

= p0µ
2
1p

2
1 + p1µ

2
1(1− p1)

2

= µ2
1p0p1.

Finally we get:

σ(t) =
√
Var(x) =

√
p(t)σ2

1(t) + µ2
1(t)(1− p(t)p(t),

We now prove the Theorem 2

Proof. [Threshold increases probability] (intuition behind the proof)
Let’s show that the theorem holds for some nontrivial case with moderate t. First, we notice that the terms in

Lemma 4 do not depend on permutations of the domain of fR, therefore for this analysis we can reorder the function
according to decreasing values. Let’s assume that fR(x) can be approximated by an exponential law fR(x) = λe−λx

(after reordering the values). Therefore, we can approximate each terms from lemma 4:

p(t) =
− log (t/λ)

λ

µ1(t) =

∫ p(t)

0

x · λe−λxdx

=
1

λ
− t

λ2
+

t log(t/λ)

λ2

σ1(t) =

∫ p(t)

0

x2 · λe−λx − µ2

=
(λ2 − t2 + 2t2 log[t/λ]− t(λ+ t) log[t/λ]2)

λ4

Putting everything together in Lemma 4, we obtain an explicit expression for the value σ(t)2 . For a fixed λ, the

function in t increases before reaching a maximum and then decreases. One can also check limt→∞ σ(t)2 = 0. Finally,
since the function fR is continuous, the Intermediate Value Theorem tells us that there exists a value of t for which

σ(t)2 ≤ σ2. This proves equation 11.

Now consider k ∈ R+ such that 1 − 1
k2 ≥ 1 − σ2

ϵ2n . From Theorem 1 the moment computed from the thresholded
function read as:

P(ŷn ∈ Bϵ) ≥ 1− σ(t)2

ϵ2n

Hence we want:

1− σ(t)2

ϵ2n
≥ 1− 1

k2
≥ 1− σ2

ϵ2n
(C2)

23

We focus on

1− σ(t)2

ϵ2n
≥ 1− 1

k2

σ(t)2

ϵ2n
≤ 1

k2

σ(t)2 ≤ ϵ2n

k2

Through the same reasoning as equation 11, there exist a t that fit this scenario. And so the same t works as well for
equation C2 which certify equation 12 and achieves the proof.

Appendix D: Properties of the transform and distinguishability

1. Proof of Lemma 1

The following claim is prerequisite to show Lemma 1.

Claim 6.

a ̸= 0(k) =⇒ FN (a)[ia] = 1 (D1)

Proof. The proof is by contradiction.
a = a1 · · · ak matches with ia = 0(N−k)a1 · · · ak at the last k bits. If we assume FN (a)[ia] > 1, then, a matches with
ia at somewhere else, say a1 · · · ak = 0(l)a1 · · · ak−l, (l ∈ Z+, 1 ≤ l ≤ k − 1). Then we get a = 0(k) by solving

a1 = 0,

...

al = 0,

al+1 = a1,

...

ak = ak−l.

This contradicts with a ̸= 0(k).

We now prove the Lemma 1

Proof. [Injectivity] The proof that a = b =⇒ FN (a) = FN (b) : is trivial from the definition of FN . Thus we only
need to prove FN (a) = FN (b) =⇒ a = b. To do so, we use the contraposition that is, we want to prove that
a ̸= b =⇒ FN (a) ̸= FN (b).
Set

a = a1 · · · ak, (ai ∈ {0, 1}, i = 1, · · · k),
b = b1 · · · bk, (b ∈ {0, 1}, i = 1, · · · k),
0(m) = 0 · · · 0︸ ︷︷ ︸

m

,

ia = 0(N−k)a1 · · · ak,
ib = 0(N−k)b1 · · · bk,

and FN (a)[i] where i ∈ {0, 1}n denotes the i-th element of the vector FN (a).

Case i) When a = 0(k)

FN (a)[0(N)] = N − k + 1, by the definition of FN . FN (b)[0(N)] = 0, since b ̸= a = 0(k). Thus, FN (a) ̸= FN (b).

24

Case ii) When a ̸= 0(k)

Let b ̸= 0(k), since the case of b = 0(k) can be proved completely the same as the case of a = 0(k). We prove by
contradiction. Assume FN (a) = FN (b). This gives

FN (a)[ia] = FN (b)[ia], (D2)

FN (a)[ib] = FN (b)[ib]. (D3)

From Claim 6 and equation (D2), FN (b)[ia] = 1. Thus, for an integer k1, 1 ≤ k1 ≤ k − 1,

b1 · · · bk = 0(k1)a1 · · · ak−k1 (D4)

since 0 ̸= b ̸= a.
From Claim 6 and equation (D3), FN (a)[ib] = 1. Thus, for an integer k2, 1 ≤ k2 ≤ k − 1,

a1 · · · ak = 0(k2)b1 · · · bk−k2

=

{
0(k2)0(k1)a1 · · · ak−k1−k2

if k − k2 ≥ k1 + 1

0(k2)0(k−k2) if k − k2 ≤ k1

by equation (D4) and 0 ̸= a ̸= b . By considering the same way in the proof of Claim 6, a will be 0(k) in both cases.
This contradicts with a ̸= 0(k). Therefore, FN (a) ̸= FN (b).

2. Proof of Lemma 2

Proof.

∥FN (a)− FN (b)∥22
=FN (a) · FN (a) + FN (b) · FN (b)− 2FN (a) · FN (b)

Thus, we will analyze FN (a) · FN (b). From

Fk+l(a) =

l+1∑
i=1

(
1
⊗(i−1)
2 ⊗ |a⟩ ⊗ 1

⊗(l+1−i)
2

)
,

the inner product becomes

Fk+l(a) · Fk+l(b)

=

l+1∑
i=1

(
1
⊗(i−1)
2 ⊗ |a⟩ ⊗ 1

⊗(l+1−i)
2

)T l+1∑
i′=1

(
1
⊗(i′−1)
2 ⊗ |b⟩ ⊗ 1

⊗(l+1−i′)
2

)
=
∑
i=i′

(
1
⊗(i−1)
2 ⊗ |a⟩ ⊗ 1

⊗(l+1−i)
2

)T (
1
⊗(i′−1)
2 ⊗ |b⟩ ⊗ 1

⊗(l+1−i′)
2

)
+
∑
i ̸=i′

(
1
⊗(i−1)
2 ⊗ |a⟩ ⊗ 1

⊗(l+1−i)
2

)T (
1
⊗(i′−1)
2 ⊗ |b⟩ ⊗ 1

⊗(l+1−i′)
2

)
.

For the first term, ∑
i=i′

(
1
⊗(i−1)
2 ⊗ |a⟩ ⊗ 1

⊗(l+1−i)
2

)T (
1
⊗(i′−1)
2 ⊗ |b⟩ ⊗ 1

⊗(l+1−i′)
2

)
=

l+1∑
i=1

(
1
⊗(i−1)T
2 1

⊗(i−1)
2

)
⟨a|b⟩

(
1
⊗(l+1−i)T
2 1

⊗(l+1−i)
2

)
=

{
0 (a ̸= b)

(l + 1)2l (a = b)
,

25

since ⟨a|b⟩ = δa,b.
For the second term with a ̸= b, the positions of |a⟩ and |b⟩ differ, so the calculation of the inner product will not be
easy as the case of the first term. Here I assume that l ≥ k and will divide the second term into two cases; (i) when
the positions of |a⟩ and |b⟩ do not overlap, and (ii) when they overlap. The case of l < k can be regarded as only
considering Case (ii).
Case i): when the positions of |a⟩ and |b⟩ do not overlap
It can be illustrated as (l − k + 1) cases shown below (there are 12s in the blank places):

a1a2 · · · ak−1ak

b1b2 · · · bk−1bk,

a1a2 · · · ak−1ak ︸︷︷︸
1

b1b2 · · · bk−1bk,

a1a2 · · · ak−1ak ︸︷︷︸
2

b1b2 · · · bk−1bk,

...

...

a1a2 · · · ak−1ak ︸ ︷︷ ︸
l−k

b1b2 · · · bk−1bk.

Here I showed the case when ak is in front of b1. The opposite case (when bk is in front of a1) can be considered in
the completely same way. For all of them, the inner product will be 2l−k, because the inner product of |ai⟩ (or |bi⟩)
and 12 will be 1 for all 1 ≤ i ≤ k (there are 2k of this inner products), and the inner product of 12 and 12 will be
2 (there are (l − k) of this inner product). When there is g-length gap between the positions of ak and b1, there are
(l − k − g + 1) options for the position of a1. Thus, the sum of inner products is

2 · 2l−k
l−k∑
g=0

(l − k − g + 1) = 2l−k(l − k + 1)(l − k + 2).

Case ii): when the position of |a⟩ overlaps with the position of |b⟩
These cases will be illustrated as below; when a1 is in front of b1 (Case ii-1)

a1a2 · · · ak−1ak

b1b2 · · · bk−1bk,

a1a2a3 · · · ak−1ak

b1b2 · · · bk−2bk−1bk,

...

...

a1a2 · · · ak−1ak

b1b2 · · · bk−1bk,

26

and when b1 is in front of a1 (Case ii-2)

a1a2 · · · ak−1ak

b1b2 · · · bk−1bk,

a1a2a3 · · · ak−2ak−1ak

b1b2b3 · · · bk,

...

...

a1a2 · · · ak−1ak

b1b2 · · · bk−1bk.

For both (Case ii-1) and (Case ii-2) the jth pattern represents the case when the positions of a1 and b1 are j-separated.
For j-separated case, the sum of the inner product is{

(l − j + 1)2l−j when overlapping part of a and b is same,

0 else.

This value depends on a and b. We will calculate the maximum value of the inner product of this part. The task is
to find the possible combination which gives the maximum inner product value from the below table.

j Case ii-1 Case ii-2

1 l2l−1 l2l−1

2 (l − 1)2l−2 (l − 1)2l−2

...
...

...

k − 1 (l − k + 2)2l−k+1 (l − k + 2)2l−k+1

TABLE IV: Maximum inner product value for each separation value j

First, choose l2l−1 and l2l−1. This is because

(l − 1)2l−2 + · · ·+ (l − k + 2)2l−k+1

=

k−1∑
j=2

(l − j + 1)2l−j

=2l−1

[
l − 2−

(
1

2

)k−2

(k + l + 2)

]
≤2l−1l,

so you get more than half of the possible inner product value by choosing them. If you choose these two, a2 · · · ak =
b1 · · · bk−1 and a1 · · · ak−1 = b2 · · · bk have to be simultaneously held. You can easily see that this condition gives

a = 01010101 · · ·
b = 10101010 · · ·

or the opposite. This also satisfies the conditions for j: odd. You can see it by sliding a (or b) to the right for j: odd
positions. If you try to satisfy any of the condition for j: even for the above a and b, it will immediately gives you
a = b = 0000 · · · (or 1111 · · ·).

27

Finally, the maximum inner product value for case (ii) is

2
∑

j: odd

(l − j + 1)2l−j

=

{
2
∑n

m=1 [l − (2m− 1) + 1] 2l−(2m−1) (k = 2n)

2
∑n−1

m=1 [l − (2m− 1) + 1] 2l−(2m−1) (k = 2n− 1)

=


2l+2

9

[
3l − 2 +

6n− 3l + 2

4n

]
2l+2

9

[
3l − 2 +

6n− 3l − 4

4n−1

]

=


2l+2

9

[
3l − 2 +

3k − 3l + 2

2k

]
(k : even)

2l+2

9

[
3l − 2 +

3k − 3l − 1

2k−1

]
(k : odd)

For the second term with a = b, the sum of inner product value will be the sum of

2l−k(l − k + 1)(l − k + 2)

which is from Case (i) and

2

k−1∑
j=1

(l − j + 1)2l−j = 2l

[
2l − 2−

(
1

2

)k−2

(k + l + 2)

]
which is the sum of all the values in TABLEIV from Case (ii). We also observe that FN (a) · FN (a) does not depend
on a. Thus, we can rewrite ∥FN (a)− FN (b)∥22 as

∥FN (a)− FN (b)∥22 = 2[FN (a) · FN (a)− FN (a) · FN (b)]

Therefore we have to check the difference between FN (a) ·FN (a) and FN (a) ·FN (b). For the first term, the difference
is (l + 1)2l. For the second term, the difference appears in Case (ii), and the minimum difference is

2l

[
2l − 2−

(
1

2

)k−2

(k + l + 2)

]

−


2l+2

9

[
3l − 2 +

3k − 3l + 2

2k

]
(k : even)

2l+2

9

[
3l − 2 +

3k − 3l − 1

2k−1

]
(k : odd)

Add these differences and double it, and we get Theorem2.

Appendix E: Additional properties

Definition 1. [ℓ1-Norm of the transform]

∥FN (a)∥1 =
∑

x∈{0,1}N

N−k+1∑
i=1

δh(xi,a),0. (E1)

We need the following for the proof of Lemma 5

Claim 7.

FN+1(a) =

(
FN (a)
FN (a)

)
+ a⊗ 12N−k+1

= 12 ⊗ FN (a) + a⊗ 12N−k+1 ,

where ⊗ is the tensor product, 1n denotes n length column vector with all elements 1, and a is the 2k-length column
vector of which a-th element is 1 and the rest is 0.

28

Proof. An (N + 1)-bit string x(N+1) ∈ {0, 1}N+1 can be made by putting 0 or 1 in front of an N -bit string x(N) ∈
{0, 1}N . We can divide {0, 1}N into two sets: A set X which consists of N -bit strings which start with (k − 1) bits
matching the (k − 1) last bits of a, i.e. a2 · · · ak. Its complement set X̄ made of the remaining N -bit strings. Put a1
in front of x(N) ∈ X and generate (N +1)-bit string a1x

(N). Then the number of k-bit strings in a1x
(N) that matches

with a increases by one from the number of k-bit strings in x(N) that matches with a, because x(N) ∈ X starts with
a2 · · · ak. In other cases, i.e.,

· putting 1− a1 in front of x(n) ∈ X and

· putting a1 or 1−a
1 in front of x(n) ∈ X̄,

the number of k-bit strings that matches with a does not change. Writing this explicitly,

FN+1(a)[yx
(N)] =

{
FN (a)[x(N)] + 1 if y = a1 ∧ x(N) ∈ X,

FN (a)[x(N)] else.

Therefore, we can calculate FN+1(a) by the following procedure;

1. Concatenate FN (a) and FN (a),

2. Add 1 to the elements of which indexes start from k-bit string a.

The 2N+1 length vector indicating the position of (N+1)-bit strings which start from a can be written as a⊗12N−k+1 ,
since there are 2N+1−k strings like that. Thus, the equation in Claim 7 holds.

Lemma 5. [ℓ1-Norm Recursive Expression]

∥FN+1(a)∥1 = 2∥FN (a)∥1 + 2N−k+1. (E2)

Proof. By taking the ℓ1-norm on each side of the equation from Claim 7, it can easily be shown. (both vectors on the
right hand side of the equation are vectors with non-negative elements.)

Lemma 6. [ℓ1-Norm Explicit Expression]

∥Fk+l(a)∥1 = 2l(l + 1). (E3)

Notice that all elements a have the same norm!

Proof. By substituting N in Lemma 5 to k + l,

∥Fk+l+1(a)∥1 = 2∥Fk+l(a)∥1 + 2l+1.

Set ∥Fk+l(a)∥1 = sl. Then,

sl+1 = 2sl + 2l+1,
sl+1

2l+1
=

sl
2l

+ 1.

Thus,

sl
2l

=
s0
20

+ l,

sl
2l

= 1 + l, (∵ s0 = ∥Fk(a)∥1 = ∥a∥1 = 1)

∥Fk+l(a)∥1 = sl

= 2l(l + 1).

29

Lemma 7. [Distance expression] The distance between the transform of two different rules a and b of length k can
be expressed as follow:

∥FN (a)− FN (b)∥2 = 2
[
∥FN (a)∥2 − CN (a, b)

]
, (E4)

where

CN (a, b) =
∑

x∈supp(FN (a))∩supp(FN (b))

min(FN (a)[x], FN (b)[x])

is the number of common elements of both vectors. (It is the number of times both strings a and b appear as a
sub-string of x for all x.)

Proof. We want to compute ∥Fn(a)− FN (b)∥2, using the polarization identity for ℓ2-distance we have :

∥FN (a)− FN (b)∥2 = ∥FN (a)∥2 + ∥FN (b)∥2 − 2FN (a) · FN (b).

Then we use the fact that all rule have the same ℓ2-norm to get

∥FN (a)− FN (b)∥2 = 2
[
∥FN (a)∥2 − FN (a) · FN (b)

]
(E5)

Finally, FN (a) · FN (b) =
∑

x(FN (a)[x], FN (b)[x]) is non-zero iff x ∈ supp(FN (a)) ∩ supp(FN (b)).

