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In this paper, we present the Monte-Carlo Compressive Optimization algorithm, a new method
to solve a combinatorial optimization problem that is assumed compressible. The method relies on
random queries to the objective function in order to estimate generalized moments. Next, a greedy
algorithm from compressive sensing is repurposed to find the global optimum when not overfitting
to samples. We provide numerical results giving evidences that our methods overcome state-of-the-
art dual annealing. Moreover, we also give theoretical justification of the algorithm success and
analyze its properties. The practicality of our algorithm is enhanced by the ability to tune heuristic

parameters to available computational resources.

I. INTRODUCTION

Optimization problems stay in the very core of many
important modern world applications including engineer-
ing, finance, or physics. However, finding efficient ways to
solve these problems is an important concern, since com-
putational time usually increases exponentially with the
size of the instance. For instance, the minimization of the
cost function in neural networks is done over the space of
network parameters and finding a global extremum be-
comes harder as the network depth increases. However,
if the cost functions are continuous and differentiable,
or even convex, there are several powerful methods such
as gradient-based methods including Stochastic Gradient
Descent [1] or gradient-free methods including COBYLA
or Nelder-Meads [2, 3]. On the other hand, combinato-
rial optimization, which we focus on in this paper, turns
out to be much more difficult task. Studies from the last
decades have identified extremely challenging tasks un-
der the form of cost function that can be expressed as
the minimization of a generalized Ising Hamiltonian [4—
7). Indeed, Ising problems have a discrete structure and
when the interaction between non-nearest neighbor spins
contribute to the energy, dynamic programming methods
[8—10] stop working (spin-glass or random energy prob-
lems). The optimization becomes extremely challenging.
The best methods known today rely on meta-heuristics,
as in the case of simulated annealing [5, 11] or genetic
algorithms. The cost function in which this complicated
structures appears are not limited to physical scenarios
but are, in fact, present in many NP problems including
NP-complete problems as the knapsack problem or the
traveling salesman problem.

In this work, we propose a novel optimization algo-
rithm which can be used to handle combinatorial opti-
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mization tasks of high complexity as long as the prob-
lem is compressible. Loosely speaking, we say a problem
is compressible if there exists a short description which
determines all values of the function which needs to be
optimized. This implies that an embedding can be found
from the compressed description space to the optimiza-
tion space which maps all the relevant information into
the values of the cost function. The optimization method
proposed in this paper relies on the principles of compres-
sive sensing [12-15] and statistical compressive learning
[16] as well as on Monte-Carlo methods [17, 18].
Compressive sensing is a well established field which al-
lows for recovering a high dimensional signal from small
number of linear measurements given that one knows a
basis in which the signal has a sparse representation. The
recovery procedure finds the sparse representation explic-
itly, from which the high dimensional signal if derived
by the known basis transform. The number of measure-
ments needed to recover the total signal scales as a poly-
nomial function of the number of the non-zero entries of
the sparse representation which is much smaller than the
dimensionality of the signal. Compressive learning is a
relatively new idea. There, a sample from a distribution
is mixed by a sketching function and a recovery algorithm
which is applied to the sketching image returns a distribu-
tion which matches the original distribution better than
the estimates based on the sample directly. Monte Carlo
is a known approach which uses stochastic algorithms
to explore properties of high dimensional functions in-
tractable by rigorous analytical approaches. The com-
binatorial optimization method we propose here—Monte
Carlo Compressive Optimization combines appealing fea-
tures of the three fields in a novel way. It is applicable if
we can assume the existence of the sparse representation
of a function, although this representation does not need
to be known explicitly. It learns the properties of the
maximum value of the function from sketches applied to
random samples from the function, although the maxi-
mum may never be explored during the sampling process.
The approach can be useful for a wide range of applica-
tions including reinforcement learning and graph prob-
lem optimization. A numerical analysis shows the per-



formance of our method compared to the general state-
of-the-art method applicable to this kind of problems:
dual annealing (simulated + fast annealing) [19-21].

The paper is structured as follows. In Section II, we
will set the framework and define a complicated com-
pressible combinatorial problem determined by a few
rules. In Section ITI, we define and discuss our algorithm,
the Monte-Carlo Compressive Optimization algorithm.
The Section IV shows the performance of our algorithm
obtained through numerical simulation and compare it to
the state-of-the-art optimization method: dual anneal-
ing. Section V is dedicated to a theoretical justification
of the algorithm. The Section VI discusses additional
properties of the algorithm such as stability of the al-
gorithm and uniqueness of the solution. Finally, in the
last section we discuss applications of our method in Re-
inforcement Learning and finding the ground states of
complex Hamiltonians; the role quantum computers can
play in the optimization will be discussed as well.

II. OPTIMIZATION AND COMPRESSIBLE
COMBINATORIAL PROBLEMS

An optimization problem consists of finding the op-
timum (minimum or maximum) of a given real-valued
function f, namely the objective, cost, loss or reward
function. In mathematical terms, this is to find z* =
argmin, f(x) (resp. argmax). To evaluate the perfor-
mance of an optimization method, one can consider the
query complexity framework where calls to the cost func-
tion are made through an oracle at constant cost O(1).
For combinatorial optimization, the solution space is the
space of all possible bit-strings of a given length: {0,1}V.
This explains why naive methods—brute-force, linear
search-—have a cost of O(2"). Optimization is generally
difficult but in some cases one can exploit the structure of
f to overcome the difficulty as it is the case of gradient-
methods for continuous/convex functions. For discrete
binary cost functions, a similar desirable feature is the
recursivity as it allows one to use dynamic programming
methods and changes time complexity into space com-
plexity.

Consider a compressible objective function fr : x +—
fr(x), where x € {0,1}" and fr is uniquely determined
by a few rules R. A rule (r,w,) can be defined as a bit-
string r € R of a given length £k < N and an associated
reward w, € R. Ounly if the input bit-string x contained
the bit string r as a sub-string, then the total cost fr(z)
increases by w,..

For a given input x, the function is defined as:

N—k+1
fr(z) = Z Z wréh(mmwrk—lﬂ")vo (1)
reR 1=1

where x;_,; 1 is a k-length sub-string of the bit-string «
starting from the i-th bit, § is the Kronecker delta and

h is the Hamming distance. From now let us use the
notation 0y (Tisitk—1) = On(e,ipr_1,m),0

The function is compressible in the way that all the
information is contained in a few values and there exists
a (non-linear) mapping Fy : R — R2" embedding the
rules into the optimization space. This mapping is given
by the following transform:

N—k+1

Fn(r) = Z Z Or(Timsitk—1)X (2)

ze{0,1}N i=1

where x is a vector of which the z-th element is 1 and
the rest is 0. The transform Fy maps a rule r to a 2V
real values vector that contains the value taken by our
function fr on {0,1}". We can define the vector:

o= w Fy(r), (3)

reER

as a linear combination of the transform of all rules in
R and thus redefine the function fr(x) as the z-entry of
the vector fr.

To show the difficulty in optimizing such functions, one
can rewrite fr as a diagonal matrix, it reads:

H = diag(fr)
= Z wrdiag(Fn (1))

reR
n—k+1

Z Z Z W0y (T iy p—1)diag(x)

ze{0,1}N reR =1

Physicist may not have failed noticing the similarities
between the diagonal form of our cost function described
above and the mathematical description of an Ising prob-
lem including non-linear coupling terms, i.e. the value of
each w, depends on the spin configuration w,(z). Us-
ing the conventional mapping from QUBO (or general
Binary problem) to Ising Hamiltonian for the non-zero
contributions, we have:

N—k+1 ik T4 (_1)% g
M= D wiimisim-1) Q) (#)
reR i=1 i

(4)
where z; is the i-th bit of z, the tensor term implicitly
contains tensor identities for subspaces that are not cov-
ered by j. Developing the right part, this is exactly the
form of a general Ising Hamiltonian where interaction are
taken between the k-closest spins (tensor product of k
terms o with consecutive indices) and coupling are non-
linear (for more detailed discussion, see Section VII).
Our goal is to find the best input bit-string «* that
maximizes the reward function fr(z*). We define it as

Problem I x} = argmax fr(x).



The association done above with a general Ising Hamil-
tonian allows us to state that, in general, this is a prob-
lem belonging to the complexity class NP-complete. This
is a really complicated problem since the reward func-
tion does not present any particular properties such as
continuity, convexity or differentiability and the solution
space is of size 2V where N is the length of any input
bit-string. When the cost function does not present any
simplifying property, it should be considered as a black
box and state-of-the-art methods rely on meta-heuristics
like simulated annealing or quantum annealing.

III. MONTE-CARLO COMPRESSIVE
OPTIMIZATION ALGORITHM

In this section, we present our main result which is a
new algorithm to solve combinatorial optimization prob-
lems like Problem I, i.e. compressible in the way de-
scribed in Section II.

Consider the cost function over the set of all possible
bit-strings of length N. It is a real-valued function
f: {0,1}¥ — R*. Tt is also useful to consider the
probability distribution 7 associated with the density
function f(z) (that is normalized).

Algorithm 1
Inputs: sample size n, threshold parameter ¢, sketch
fucntion @, decoding procedure A.

1. Compute a sample of f called S f. To do so: First,
draw a sample Z of n indices from the uniform dis-
tribution. Then apply the sampling operator Sz
defined as St : x — 6, yez to f.

2. Apply a hard thresholding operator Ty such that
in T;Sf all values Sf(z) lower than a given t are
removed from the sample.

3. Apply a sketching map (also known as a measure-
ment map or a feature map) ® to get y = ®(T1.Sf).
We call y the sketch vector and it contains an em-
pirical estimation of generalized moments of the dis-
tribution 7.

4. Apply a decoding procedure A to y and get © =
A(y). The decoding procedure is taken from com-
pressive sensing greedy methods (Matching pur-
suit, Orthogonal Matching Pursuit ... ).

5. The largest line of 7 is used as the maximum esti-
mate.

The Monte-Carlo method [17] can be used to approx-
imate generalized moments similar to the one from [16].
This is a well known result from the probabilistic compu-
tation theory (or ergodic theory), about a large number
M of samples sampled independently from a probability

distribution T,

1
Jim > 0 glem) = g@a)T(ea) (5)
T(5)~T (i)

%% Z g(x@)m(z@), (6)

JZ(i)Nu

where S is the size of the domain. Which means that a
moment of a function g of a variable x with respect to
a measure 7(x) can be approximated by sampling from
the uniform distribution and computing the value of the
density function 7(x) in those points.

We now discuss the choice of the sketching function
®. We know from the compressive sensing theory that
functions ® which respect some properties such as the Re-
stricted Isometry Property (RIP) are good candidates—
in practice, often randomized linear maps are used. How-
ever, structured deterministic measurement functions
can also work [15]. Also, for instance in [22, 23], struc-
tured measurement functions with different advantages
were used. Moreover, the sketching function does not
necessarily need to be linear, generalized moments of
the distribution can be of different degrees. Introducing
non-linearities such as a hard thresholding process [15]
in practice gives us better performance with respect to
random linear map alone. In addition, the choice of the
sketching function directly impact the optimization step
within the recovery algorithm. The freedom in the choice
of the sketch function allows for flexibility in the algo-
rithm complexity, which can be tailored to match one’s
available computational resources. Indeed, this turned
out to be an essential element of the practical implemen-
tation and its justification presented in the next sections.

Lastly we underline the importance of using greedy
methods as the matching pursuit rather than ¢; mini-
mization method such as the basis pursuit. Indeed, ¢;
recovery methods aim at recovering the exact sparse sig-
nal by putting more emphasis on the constraints. Even
though this might be a desirable behavior in compres-
sive sensing it is not here in Monte-Carlo Compressive
Optimization. When putting more emphasis on the con-
straints, we are learning about the particular features
from the selected sample rather than the global features
from the distribution. This phenomenon is known in
learning theory as overfitting. On the other hand, greedy
methods like matching pursuit put emphasis on the spar-
sity. These methods focus on finding the one line that
match the best all constraints and this line often matches
with the maximum line of the distribution.

In section IV, we use several sketching functions to
compute generalized moments as well as the Orthogo-
nal Matching Pursuit for the decoding procedure. The
sketching functions we used are defined as follows:
Quadruplets



Each line of the sketching matrix is defined by

QLB — 1 @ ... ® 1
® (1 —z1,21)® (1 — 22, 22)
® (1 —z5,23) @ (1 — 24,24)
Rlits®... 1N

for every starting position 1 <7 < N — 3 and z;s take all
binary values.

Quintuples

Each line of the sketching matrix is defined by

L
®(1—z1,21)® (1 — 29,22)
® (1 —x3,23) ® (1 — 24, 24)
® (1 —25,25) ® Lits
... 1N

for every starting position 1 < i < N — 4 and z;s take
all binary values.
Random sketch A random binary matrix.

In Section V, we will focus on using the Matching
Pursuit algorithm for decoding procedure. This defines
the following problem for the first crucial step of Match-
ing Pursuit:

Problem II v, = argmax T TS fr.

IV. NUMERICAL RESULTS: COMPARISON
WITH OTHER OPTIMIZATION METHODS

In this section, we numerically compare the perfor-
mances of the Monte-Carlo Compressive Optimization al-
gorithm when using different sketching functions ®. We
compare their performances with each other and with
the dual annealing algorithm, known as the best heuris-
tic method to handle general combinatorial optimization
problems.

Setup : In order to work with reasonable computa-
tional time, we choose a problem of relatively small size,
bit-strings of length N = 12 (space dimension is 2%V).
This also allows for visualization of the problem structure
when having a look at its, usually unknown, spectrum.
Even though the case with longer length will be the sub-
ject of further study, the theoretical arguments convince
us that similar results will still be valid. The problem
of interest is shown in Figure 3 and was randomly drawn
from the set of possible problems. Note that the problem
belongs to a general class of Ising-like cost functions that
are complicated to solve even for current state-of-the-art
heuristic methods like dual annealing.

We chose a set of possible rules described by sequences
of four, five or six bits. The number of each rules, as well
as each pattern, are chosen randomly. The metric used

in Figure 4 is the average distance (over the choice of
samples) to the real optimum f(z*) — f(&). We compare
this distance for different sample size n going from 50 to
300.

Additionally, Figure 1 gives the distribution of this
same distance for different estimates coming from dis-
tinct samples. Another interesting metric is the Ham-
ming distance of the estimate string Z to the optimal one
x*. This Hamming distance distribution for different es-
timates coming from distinct sample appears in Figure
2.

In the case of the dual annealing, we chose the number
of iterations to be of the same order as the sample size.
Indeed, this is a fair comparison since the number of calls
to the cost function f, supposedly costly, will remain the
same in both cases. In addition, the annealing method is
in fact similar to a sampling method—it can be associ-
ated with the Metropolis-Hastings algorithm [24] where
the sampling domain is reduced at each iteration.

Results interpretation: The results are shown in
Figure 4. First observation is that all three sketching
functions reduce the distance to the optimum in a polyno-
mial way. Quadruplets and quintuplets methods perform
well compared to the random linear sketch function but
also to the annealing. Indeed, for quadruplets and quin-
tuplets methods, the distance to the optimum reduces in
a similar or faster manner with respect to the annealing
method. This is strong evidence that, on this class of
compressible cost functions, our method can outperform
the state-of-the-art dual annealing method, especially in
the useful case of the small sample size solution.

Figure 1 shows that in most cases (more than 50%
cases for non-random sketch method) we are able to find
the actual optimum. Even when failed, the suggested
solutions are close to the minimum within a tight interval
from f(x*). Figure 2 shows that most of the time, for
a random sample, the corresponding estimate belongs to
the neighborhood of the solution x* (for the metric space
Fy with the Hamming distance). Even in the worst case
scenario, the Hamming distance never drops below half
its maximum, i.e. the algorithm never performs worse
than a random choice.

V. JUSTIFICATION OF ALGORITHM 1

Although, currently, we do not have the rigorous the-
oretical bounds on the probability with which Algorithm
1 approaches the correct solution with a given error, we
can provide a heuristic justification of the algorithm sup-
ported by numerical simulation and rigorous proofs of
lemmas and propositions whenever possible.

Consider a simplified situation with a single 3-bit rule
r = rirorg. We define our target problem, which is to
find a binary string x7 that contains as many sub-string
identical to r as possible. Notice that r is unknown and
does not need to be known, while 27 is learned based on
rewards given to randomly selected binary strings, where
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for a given string the reward is equal to the number of
times the rule r appears in it.

In Algorithm 1, we solve Problem II where the rows of
matrix @, are given by
Duplets

oLl — 1, @ ...

Z1,T2

® 11 (7)
@1 —z1,21)® (1 —22,22) @142 ®... @1y

for the [4(i — 1) + 221 + x2 + 1]-th row and 7 and
are binary variables.

Define variable uf, = ®.Y, where

P =19..0L,901-2,2),;1®... ¥y

is a Singulet map and

Y: (1_y1,y1)® ®(1_ynayn)u

where is the zero vector except at the position given by
the binary variables y; € {0,1}. If vectors Y are ran-
domly chosen from a distribution, the variable p! is a

random variable. Assume Y are defined by arguments
of the function T;S fr—Tlines sampled uniformly from fr
and thresholded.

Moments @yt = (ul pit') are calculated as
PLHIT,S fr, where ®LF! is given in (7). Up to nor-
malization, these moments express averages over sam-
pled elements of fr with weights corresponding to the
value each element. Analogously, we consider moments
QLU — (it pit?). These averages are related
to appropriate correlation functions

COT’T“ o <(lu‘zwl” - </147:'cll1>)(y,1$’1n — <“§£n>)>
m11 fin <[,L1$111><M2£n>

Therefore, loosely speaking, the moments express cor-
relations between a given bit configuration z;...x, € X,
and the appearance of this configuration in important ele-
ments of the sample from fr. The importance is specified
by values of fr that remain after sampling and thresh-
olding.

In Algorithm 1 we solve Problem II, which is, we find
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a string z7; for which the sum of correlations for neigh-
boring variables is maximized,

N-1

* E 2,041
Ty = arginax Soxl,mQ . (8)
i=1

Moreover, the way Algorithm 1 assigns the values @;ft}z
induces correlations between these values.

Our numerical analysis shows that solving Problem IT
often suffices to solve Problem I. Because x} contains sev-
eral times ryrors it is true that ro follows r; more often
than in a random string (the same for the pair r3 and r3),
and obviously, r3 follows the pair r17ry more often than
in random sequences. Therefore, the minimum require-
ment for any solver of Problem I should be to propose
candidate solutions x which:

e Condition 1: possibly often contain pairs of bits
rire and rors, and

e Condition 2: the pairs appear in proper order, rors
likely appear after rirs.

Notice that the solution of Problem II is a binary string
277 which is defined by the lower indices of the variables
pt, for which the sum of correlations @'t} = (uf, pitt)
is maximum (as in Equation (8)). In the following propo-
sition (proven in Appendix A), we show that pairs of
variables with x;x9 matching substrings of r have larger

expected moments than bits that does not match r.
Proposition 1. Let @bt = @Litl £y,

(i) for the problem with single rule r, for any 2 < i <
N — 2, if r’ is a substring of r, and z is not, then
7 2 i,
(ii) for the problem with single rule r, for any i, there
exists at least one r’ substring of r such that, for
any string z:

Qi+l

i,i+1
r’ Z Pz )

12

(iii) for the problem with single rule r, for any ¢, there
exists at least one 7’ substring of r such that,
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for any string z the expectation values (pp't!) =
QLTS fr satisfy:

-
(o) = (™).

Therefore, solvers of Problem IT (like Algorithm 1) pro-
motes outputs zj; including substrings of r, hence Con-
dition 1 is satisfied. Condition 2 is also expected in the
output zj; of Problem II solvers. This comes from the
consistency of the bits in %%l and @ifLi*2 — in the
correct ordering bit xo is shared. In the opposite or-
der, z3 and x; cannot always be shared, and the bits
r3r1 may not be among preferred substrings of r. The
right order is also expected based on the effect of thresh-

olding. It guaranties that in all addresses of randomly

selected lines of fr, if r17ro is found in position 7,7+ 1 in
any of the lines the probability that rs follows is high or
increases with increasing threshold (this property is dis-
cussed in Appendix B). This in turn is reflected in high
values of both the correlation %%l and itLi+2. The
thresholding argument penalizes the incorrect order of
the correlation functions. Moreover, it penalizes strings
with repeated subsings r172 not followed by rj.

Therefore, we argue that Algorithm 1 which formally
solves Problem II satisfies the minimum requirements of
solver of Problem I. Thus, the output zj; of Algorithm
1 is also, with high probability, a solution of Problem I,
as confirmed in the numerical simulations.

The arguments presented here are focused on provid-
ing an understanding based on simplified assumptions
including a single rule of size three. The generalization
for multiple different rules which is still confirmed by the
numerical tests is in many cases a complicated problem.
The rigorous proof can go along the same line of rea-
soning. However, calculating related probabilities rigor-
ously can require solving counting satisfying assignments
of logical formulas which are #P problems. Comput-
ing upper and lower bounds on the success probability
remains an open problem.

VI. STABILITY AND UNIQUENESS

In what follows, we support the justification of Algo-
rithm 1 with additional results demonstrating its robust-
ness with respect to the choice of the sample and its
responsiveness to small changes of the rules. These argu-
ments justify the stability under sampling and uniqueness
of the solution of Problem I and Problem II for a specific
set of rules.

A. Moment concentration—Stability

Let R be a given set of rule and fg(z) its associated
objective function. Let ® be a random linear sketching
function. Let {z(;}ier be a sample of size n from the
uniform distribution.

Theorem 1. [Moment concentration]

We call y = E[®(fr(z))] the "true moment” of the
function fr and g, = 3 ®(fr(z(;))) the estimated
moment of the function fr.

The following inequality holds for any y and g,:

0.2

Plly—9,] <€) >1— — 9
N I (9)
where 02 = Var[®(fr(x))] and € > 0 is a positive con-
stant.

See Appendix C1 for the proof.

The value g, is also called a Monte Carlo estimation
of y.



In our algorithm, the sketching function is replaced by
a linear map computing M distinct generalized moments.
Thus, Theorem 1 can be generalized, using the triangle
inequality, as follows:

Tr{%}

)
eZn

]P)(gn € Be) Z 1- (10)
where Tr{X} is the sum of the variances associated with
each sketching function and B, is the M dimensional ball
centered at y of radius e (which generalized |y — §,| < €).

Now looking at Theorem 1 (or equation (10) for the
general case), implies that there are two ways to increase
the probability of concentration for a given ¢ > 0. The
first one, however not desirable in our case, would be to
increase the sample size n. Indeed, sampling from our
objective function is assumed to be costly and we want
to limit the number of calls. The second way would re-
quire to reduce the variance o2. In fact, if one can find a
similar function to fg where the maximum is preserved
but whose variance is slightly lowered, one could increase
the probability to concentrate. Such a function could be
found by thresholding the original function. In conse-
quence, we can show that a clever use of thresholding
usually results in lowering the variance, and thus achieves
our goal.

We define a thresholded moment y*) = E[®(T} fr (x))],
where T} is the thresholding operator which sets every
value lower than ¢ to 0, i.e.

i >
T wes zif x>t
0 else

For the rest of the section, we assume that the threshold
parameter is not too large in such a way that the thresh-
olded moment y® would at any time remain close to the
real moment y.

Theorem 2. [Threshold increases probabilities]

Let 0®® = Var[®(T},fr(z))] be the variance of the
thresholded function. Recall, o2 is the variance of the
original function fg.

There exists a value ¢ for the thresholding parameter
for which the variance decreases:

o < o2 (11)
Moreover, for any k£ > 0 and such that 1 — 1%2 >1- %,
there exists a parameter t such that:

02

. 1
B, €B)>1- 51— T (12)
which improves the bound on P(§,, € B.) increasing each
probability.

See Appendix C2 for the proof.

From now on, rather than looking at the probability to
find ¢, in a given radius €, we focus on radius sizes having

the same probability bound for different sets of rules.
Let k£ > 0 and we define ¢® to be ) = k”—\/%) because

Theorem 1 needs to hold. This means the value of e®
now changes as ¢ decreases (when threshold increases).

Theorem 3. [Arbitrary closeness]

Let R; be a given set of rules and §,(R;) be the mo-
ments computed from the function fr,. Let ¢()(R;) the
radius of the ball B, (g,) that satisfies

N 1

Then, there exists DY) € Rt such that

. 1
P(in(Ri) € Bpw j2) 21— w2 (14)
where D is common to all R; and is given by :
DY = 2max{e(R;)}. (15)

Moreover, D®) becomes arbitrary small as ¢ increases.

Proof. Because for each set of rules the moments concen-
trate in a ball of radius €(R;), then they also all belong to
the ball of radius D*) /2. From a corollary of Theorem 2,
if k is fixed then € decreases with thresholding for any set
of rules. So D) can go arbitrary small as the threshold
parameter changes. O

From Theorem 3, we conclude that thresholding the
objective function fr allows for a reduction of the vari-
ance and thus a better concentration of the moments.
Moreover, an interesting property of thresholding is that
it can commute with sampling; indeed, a threshold ap-
plied on the value sampled from fr is equivalent to
sampling from the function fr after it was thresholded.
Thus, it makes it practical to apply threshold on the
samples rather than the full function, allowing to benefit
from the concentration in our method.

B. Rules distinguishability—Uniqueness

In this section, we will show that the distinguishabil-
ity between two rules embedded by Fn, as described in
Section II, can be increased arbitrary by increasing N.
To do so, we will study the transform Fj that embeds
the rules into the optimization space and was defined in
equation 2.

Let’s start with some properties of the transform Fly:

Claim 1. Given a string a (a rule) of size k:
L [|Fn(a)[[ =0

2. Fy, = id (if n = k, the transform is the identity),
ie., Fr(a) = a.

3. F can be written as a 2V x 2% rectangular matrix.



The proofs of Claim 1 are trivial. Additional properties
of the Fy Transform can be found in Appendix E

From the properties of Claim 1, we now prove the follow-
ing two lemma.

Lemma 1.
FN(G):FN(b) < a=0> (16)

See Appendix D1 for the proof.

Lemma 2. When a # b,

| Frvi(a) — Fryr (D)3

3.1 2+21+%
+1 3 3 9 .
- 2+ (5l—9—52]€1216 (k.even)
= 301 2k+ii4e
i+l (51 9~ 33 _ 9 25’72 9 ) (k : odd)

See Appendix D 2 for the proof.

Lemma 1 shows the injectivity of the F transform,
meaning that two distinct rules necessarily have different
transforms. Lemma 2 expresses the separation between
the transform of different rules in the ¢5 space. It shows
that two distinct rules are necessarily apart by a distance
that increases exponentially with the parameter IV deter-
mining the size of the optimization space.

Theorem 4. [Rules separations]
For any a,b # a € {0,1}* and for any d > 0, there
exists IV such that

[ Fn(a) — Fn()]|2 > d.

Proof. We combine both previous lemmas. Lemma 2 tells
us that the distance between a and b increases exponen-
tially when N grows. Thus, for any d > 0, there exists
N such that |[|[Fy(a) — Fn(b)|l2 > d. O

Theorem 5. [Moments arbitrary distance]

Let d : R2" 5 RM hea map computing M generalized
moments of the function © whose density is fr. Assume
® follows the Restricted Isometry Property (RIP). For
any a,b # a € {0,1}* and for any D > 0, there exists N
such that:

[@(Fn(a)) = @(Fn(b)ll2 = D (17)
Proof. Since ® respects the RIP, we have:

(1 =0)||Fn(a) = Fn(b)||2 < [|®(Fn(a) — Fn(b))|l2
< (1+6)|1Fn(a) = En(b)]2

where 0 € [0, 1] is the fixed Restricted Isometry constant
associated to ®. In particular:

@)~ Fy @)l < 151 ®(Ev(@) ~ Ex ()l (19)

However, from Theorem 4 we know that there exists N
such that:

d < ||Fn(a) — Fn(b)]2 (19)

for any d. And so, for the same N, and because ® is
linear:

d(1—6) < [|®(Fn(a)) — ®(Fn(D))ll2

Because this holds for any d, one just need to chose it
in such a way that D/(1 — §) < d to get the desired
property. O

Theorem 4 and Theorem 5 are the main results of this
section. Theorem 4 tells us that distinct rules are sepa-
rated in the transformed space, i.e. optimization space,
by an arbitrary distance as long as the space is large
enough. Theorem 5 extends this property to any gener-
alized moment computed from these rules as long as the
sketching function ® respects the RIP.

C. Final arguments

We know from Theorem 5 that the moments computed
from distinct rules can be arbitrary distant which reads:

12(Fn(a)) = (Fn (b)) = D. (20)

Because the optimization problem is fixed, so is the di-
mension of the space, meaning N is given. We chose for
D appearing in Theorem 5 the greatest possible values
that NV satisfies. Next having a look at Theorem 3, we
know that there exist D) such that for both set of rules

{a} and {b}:

P(gn S BD(t)/Q) >1- % (21)
and we chose k for the right hand side to be a large prob-
ability. Moreover, D) = 2max{e®(a), ) (b)} is de-
creasing with the threshold parameter ¢. Thus, we chose
t for D® to be smaller than D. We end up with the
situation where moments y, and y, from different rules
are separated by distance D and each Monte-Carlo ap-
proximation of these moments lies, with high probability
1- k%, within the ball of radius D/2. One clearly sees
that no approximation of a moment from the rule a can
be misunderstood as a moment from the rule b since they
live in different balls that do not intersect.

Since our approximate moments contains features of
the true distribution it should be, in principle, possible
to recover features of it, such as its maximum. Remem-
ber, the moment given by any sample and the moments
from the full distribution are all similar. Since we do
not use any specific feature of the sample other than the
sketching function, we will tend to recover solutions that
are representative of the distribution global features and
mostly, when combined with Section V, recover a solu-
tion containing the maximum line. This will work as



long as we are not overfitting the sample—too many mo-
ment computed by the sketching function will determine
features of this exact sample rather than global features.

VII. DISCUSSION ON APPLICATIONS AND
QUANTUM COMPUTERS

In Section IT we defined combinatorial optimization
problems that are compressible. In Section ITI we gave an
algorithm to solve such problems and Section IV showed
the performance of our method compared to the best ex-
isting method—dual annealing. Finally, theoretical justi-
fication of this algorithm was discussed in Section V and
Section VI. In this last section, we show that compress-
ible combinatorial problems naturally show up in many
fields by giving two examples. One is the problem of
learning optimal policy in Reinforcement Learning. The
other is the problem of finding the ground state of an
Ising Hamiltonian. Note that compressible problems are
not restricted to these two fields but rather may appear in
other contexts: flow problems, knapsack problem, trav-
eling salesman problem, machine learning, etc. ..

A. Reinforcement Learning

Reinforcement Learning (RL) is a crucial technique in
today’s machine learning due to its central role in several
applications, such as optimal control theory, robotics, or
game theory. It studies the behavior of an agent who aims
to learn the nearly optimal policy for a given task. We
can think of this task as a game. Given the set of game’s
states and actions, the policy dictates the choice of the
next action for a given state. Reinforcement Learning at
its beginning focuses on the exploitation of dynamic pro-
gramming methods as imagined by Richard Bellman. A
typical example is the Q-learning algorithm [25], which
makes use of the Bellman equation to update the so-
called Q-table. However, when the space of states and ac-
tions becomes too large, current methods rely on stochas-
tic principles. A clever use of the so-called policy net-
works and of the stochastic gradient descent allowed for
achieving remarkable results [26]. This approach avoids
the bottleneck of dynamical methods, but remains close
to Bellman’s original ideas; the policy is refined itera-
tively from partial returns until it eventually converges
to nearly optimal solution. Another way to tackle Re-
inforcement Learning tasks are known as Monte-Carlo
methods. In that case, we try to solve the reinforcement
learning task based on complete returns obtained from
full episodes. The name Monte-Carlo comes from the
fact that one is sampling through the space of complete
returns. This is the case of the method we presented in
Section III. Both approaches have benefits and draw-
backs, and the choice of which method to use is problem-
dependent. Let’s consider the following ”game”. At each
step, the agent has to choose between two possible ac-
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tions labeled 0 and 1. Only after one complete episode,
which consists of a sequence of N actions, a total re-
ward is granted. The goal is to find a nearly optimal
policy maximizing the total reward. Since one has only
access to the final returns, with the reward mechanism
in each episode acting like a black-box, the use of Monte-
Carlo methods seems reasonable in this context. Thus,
this RL scenario indeed exhibit a problem structure sim-
ilar to the combinatorial optimization of a compressible
function. Our approach can be use here as a competitive
method in a context where policy network could not be
exploited.

B. Ising Hamiltonians and Quantum Computers

The Ising model has been studied by physicist to un-
derstand the behavior of certain phenomena as ferromag-
netism. The energy of a given configuration is given by
the Hamiltonian H of the system. With the emergence
of quantum computing, as well as the needs for simulat-
ing quantum physics, analogy are often made between
Hamiltonians and cost functions. In this context, we
could refer to %—spins to talk about binary variables and
spin-configuration to talk about a given bit-string. The
Hamiltonian of an Ising spin-chain is given by:

H(O’) = 72}1101 — Z JiJCTiO'j (22)
@ (i,5)

where (i, j) means nearest neighbor pairs of spins. Also
notice that, in typical cases from physics, h; and J; ; are
independent of the actual configuration of ¢; and o; but
only linked to relative positions ¢ and j. We will call
this kind of typical Ising Hamiltonians ”linear” since all
coupling terms are linear. The nearest-neighbor case is
solvable by classical computers in polynomial time by us-
ing dynamic programming methods due to its recursive
property when computing the cost of a given configura-
tion. However, this is not the case in more general Ising
problems. Indeed, Ising problems such as frustrated fer-
romagnetic models, spin-glasses, random energy models
or non-linear Ising models are known to be intractable
for classical computers. A random energy Ising is given
by:

Hio)= ) weo, (23)

os€P

where o, are Pauli-Z strings within the Pauli group P of
given length s pauli strings.

We already made a parallel between such Random En-
ergy Model Ising Hamiltonian and our cost function de-
scribed in section II. Indeed, our method is a new promis-
ing approach to tackle the problem of finding the ground
state of such Ising-like Hamiltonians as no efficient classi-
cal methods are known (and there won’t be if P # N P).

Quantum computers also seem to have a crucial role
to play in combinatorial optimization, especially since so



many cost function can me mapped to Ising-like Hamil-
tonians. Indeed, quantum phenomena exhibit struc-
ture from complicated Ising problems—for instance spin-
glass—and even though quantum computers might not
be able to solve the optimization problem in polyno-
mial time (if NP ¢ BQP) [27] they might provide good
heuristics to tackle those kind of optimization problems
(see quantum annealing [6, 7], QAOA [28-30], HVA
[31], Imaginary time evolution [32], dissipative dynam-
ics [33, 34]...)

In this last section, we connect our new results to the
previous work to see how quantum computers can con-
tribute to Monte-Carlo Compressive Optimization. In
our last study, we demonstrated how a quantum com-
puter could improve compressive sensing methods [23].
The method consists in using structured patterns for the
measurement map ® in such a way that the optimization
step in matching pursuit is reduced to finding the ground
state of an Ising Hamiltonian. One relevant aspect is that
the use of structured pattern allows us to save memory
as we do not need to store an exponentially large random
matrix anymore. Another aspect was that the crucial op-
timization step of the matching pursuit algorithm reduces
to finding the solution of an Ising problem. If the pat-
terns used for ® corresponded to fixed nearest-neighbor
bits in the binary sequences, the optimization could be
handled by a dynamic programming algorithm, while for
more complex patterns (like patterns corresponding to
distant pairs of bits) the solution can be obtained using a
quantum computer apriori faster than using known algo-
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rithms on a classical computer. Indeed, the optimization
for the distant-pairs measurement patterns reduces to a
corresponding spin-glass problem and can be approached
using QAOA or quantum annealing. As these kinds of
systems seem to be quantum mechanical by nature, we
have good reasons to think that quantum computer can
perform better which is in accord with our previous re-
sults.

As it was briefly mentioned above, we can think of
the rules as encoding a random energy Ising problem
with non-linear coupling terms. This is, generally speak-
ing, a really hard problem. However, when applying the
Monte-Carlo Compressive Optimization algorithm with
a sketching function made of structured patterns, we in-
deed map the complex Ising problem into a spin-chain or
spin-glass Ising problem where important features of the
problem such as its optima can be preserved. Moreover,
the mapping is done using a sample of the solutions space,
hence it is computable in reasonable time. This really is
a major phenomenon since the spin-glass or spin-chain
problems are much easier to solve and, in many cases, we
care more about the optima of a function than we do for
its other properties.
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Appendix A: Proof of Proposition 1—Larger momemnts of substrings of the rules

Proof. Formally,
G (BT Ry (r),
where
P = (11®...91,102®1Li12®... ®1y)
and
Fyr)=r@L®.. @ly+1L1e0rel®.. @ly.+1L®...®ly 307

i) For any position 2 < i < N — 2
For a measurement bits x1x5 to match the rules at those positions, there are four possibilities shown in Table I:

o If 2125 matches either 77211797973 — the energy increases by 2V =3

e If z; matches 73 — the energy increases by 2V 4

e If 25 matches r; — the energy increases by 2V —*

e Any other case — the energy increases by 0

So in total, any sketching pattern that are substring of a rule ( 7179 or ror3) will bring 2V—3 energy. The other
most energetic case is x1x = 7371 which brings 2 x 2V~% = 2V =3 energy (same amount).

All other cases bring less energy. So we have indeed for all subtring r and any z m&*1 > mii*1 If it’s true for
all, then it’s also true for at least one.

ii) We study matching at the beginning and at the end

a) matching in position 1,2, (Table II).

Xr1|T2
T1|T2||T3
T1||T2|T3
T1|T2|[T3
T1||T2|T3

TABLE I: Configurations in which two bits x1 and x5 inside a string can mach the rule rirors.
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T1|T2||T3
T1||T2|T3
T1|T2|T3
T1|T2|7T3

TABLE II: Configurations in which two bits z; and x5 at the beginning of a string can mach the rule ryrars.

T1|T2|T3
T1|7T2|T3
T1|T2(| 73
T1||T2|7T3

TABLE III: Configurations in which two bits 1 and xo at the end of a string can mach the rule rirars.

e If z,25 match 17, — the energy increases by 2V—3
e If 25 matches r; — the energy increases by 2V 4

e Any other case — the energy increases by 0

So there is one substring r , namely 7179, that brings more energy than any other string.
The other substring all bring 0 energy for this position.
b) matching in position N-1,N (Table III).

o If 2,mo match ror3 — the energy increases by 2V 3

o If 21 matches r3 — the energy increases by 2V —*

e Any other case — the energy increases by 0

So there is one substring r , namely 7973, that brings more energy than any other string.
The other substring all bring 0 energy for this position.
Part (iii) easily follows from (ii). O

For the problems with multiple rules the above reasoning should be completed by multiplying powers of two by
appropriate factors proportional to values of rewards. The statements regarding the ordering of < ¢%+! > for x
belonging to different rules, or appearing in different rules, or not belonging to any of them is more complicated.
However, similar arguments to Propositions 1 supported by numerical simulations allow us to conjecture that Algo-
rithm 1 assigns higher values (p%**1) to pairs of bits x which are parts of the rules.

Appendix B: Probability of realizing the rules at a given position knowing it appears ¢ times

We want to compute the probability for a rule of size m to realize after matching m — 1 bits given that the strings
of interest all contains exactly ¢ times the rules. We compute for a simple example as it is already complicated. In
our cases we take the rule 001 of length m = 3 and the string contains a single time ¢ = 1 the rule.

We will proceed as follow:

1. Count the string that contains a single 001

2. Belong them estimate the number of that contains L times 00 as a substring. The probability in that string to
find 001 after 00 is given by %

3. Compute the expectated probability for all L
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1. Counting the string that contains a single 001

We start by counting the string that contains at least one 001 as a substring. We want to count
all the strings of a given length N which contains at least one ‘001° substring. We define Ey =
{s — s has at least one substring equals 001 and |s| = N} The goal is to compute its cardinality ey := #En.

Claim 2. There is an explicit expression for ey given by

[N/3]
N — 2k
eN = E (_l)k‘Jrl ( k )2N3k (Bl)
k=1

Proof. Let A; = {s — s have its s; substring equals to 001}. By definition we have Exn = UZV:_IQ A;. We now use the
inclusion-exclusion principle (see below) to get

ev= Y (DN 4

#JC{1,...,n} Jjed

Because the string ‘001° does not overlap with itself: if ¢,j € J are less than 3 apart (length of the substring) that is
|i — j| < 3, then # ijJ A; = 0 for this given J. So contribution only comes when choosing the element of J to be
at least 3 apart. Let’s consider all the J of a given size k ex: k =1 then J = {1} or {2}... For a given k, we fix 3k
bits in the string s and there are N — 3k free bits. This give a cardinality of #4; = 2V=3% for j € J and #J = k
(elements chosen 3 apart). Finally the number of ways to chose k starting position for ‘001¢ in s of length Nis given
by (NZ%). All together we have

Lv/3]

N —2k
— _1\k+1 N—3k
k=1
Because all sets A; have the same cardinality (2V~3%) for a given k, we just need to count them and multiply their
contributions. This is a common situation when the result depends only on the number of sets in the intersection and
not on which sets appears. O

We can now count the N length strings which contains a single time 001 as a substring. We want to com-
pute the number of string of length N which contains ‘001° a single time as a substring. We call Sy =
{s — s has exactly one substring equals 001 and |s| = N} The goal is to compute its cardinality sy := #Sn

Claim 3. There exists a recursive formula for sy given by

SN+1 = 2SN — SN—2 + oN-2 _ EN_2 (B2)
where
L(N-2)/3]
N — 2(]{1 + 1) 3k
o= _1 k+1 2N 3k—2 B3
wa= 3 (D (M) (83)

Proof. First we compute the first terms: s; = 0 and s3 = 0 s3 = 1 because S35 = {001} s, = 4 because Sy =
{001%, %001} Going from N to N + 1 we add strings to Sy1 from two sources:

1. For all string m € Sy we can build a new string m’ = m - * If m doesn’t end by ‘00‘ then m’ contains a single
time ‘001° because m itself contains a single time ‘001‘. Because for m € Sy, if m end by ‘00‘ the others N — 2
bits are free and should contains ‘001° a single time. The number of string m ending by ‘00° is exactly sy _s.
The total contribution is then 2sy — sy_o.

2. We need to add all the other strings that end by ‘001‘ and did not contains any ‘001 before. Because the last
3 bits are fixed to ‘001° the remaining N — 2 bits are free and should not contain any ‘001‘ . Thus there are
#(string of length N-2) — ey _ such strings (where ey is defined in the previous section) The total contribution

is then 22 — e _s.

Combining (1) and (2) achieves the proof. O



Claim 4. There exists an explicit formula for sy given by

LN/3]
Z N -2k
SN — (_1)k+1< k >k2N3k

k=1

Proof. (by induction) We want to show the following property

[IV/3]
N -2k
(hN) SN = Z (_1)k+1( L )k2N—3k

Initialization : Using the formula we can check

1. s1=0
2.89=0
3.s3=1
Induction :

Suppose (hy) is true for N, let’s show (hx1) is also Using the recursive formula from Claim 3 we have

by hypothesis on sy

We rewrite line (1) as

adding with line (3) we get

Let’s call K = [ N/3]
We distinguish two cases:

1L |(N+1)/3) =K

2. [((N+1)/3] = K +1

k=1

N-2
SN41 = 28N —SN_2 + 2 —eN_2

LV/3)

snpr =2y (=)
k=1

N —2k
k

) k2N73k

[N—2/3]
_ Z (_1)k+1 (N_2(k+1))k2N_3k_2
k=1 k
+2N=2
L(N—2)/3]
_ Z (_1)k+1 (N_2(k+1)>2N_3k_2
k=1 k
K
Z(_l)k+l (N 2k> o N+1-3k
k=1 k
X N — 2k
— (N 2)2]\772 + Z(fl)k+l < L >k2N+13k
k=2
K N — 2k
N —1 2N72 -1 k+1 - k2N+173k
e e G

15
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Case 1:
Step 1: We add lines (2) and (4) together. Because |(N +1)/3| = K thus | (N — 2)/3] has to be K — 1.

K—1
N=2k+1)\ .y o
— Z(_l)kJrl( . >2N 2 3k(k+1)
k=1

Let ¥ =k+1 (k=% —1) so the sum become

K
_ )k' N - Qk/ 2N+173k/k/
k=1

k'=2

]

The term (—1) in front can be inserted to change the alternating term: (k' is written as k again for readability)

K

Z k+1 ( 21k) 2N+1—3kk

=2

Using Pascal formula for binomial coefficient we have (Alfc:zlk) = (N +}€_2k) - (N ;%)

K K
N +1-2k N — 2k
Z k41 N+1-3kp, _ Z _q\k+L N+1-3k
(=1) ( k )2 K (=1) ( k )2 b

k=2 k=2
Step 2: We add everything together (1) + (2) + (3) + (4)
(N —1)2N=2
o N —2k
+ Z k+1 < >k2N+13k
k=2
a N+1-2k
s N+1-3k
+) (-1 ( L )2 k
k=2
K
Z k+1< 2k> oN+1-3k},
k=2

First and last lines contains the same sums so they cancel out

K
(N =12V 724 (—1)hH (N * ;_ 2k> oN+1-3k

Step 3: Notice (N — 1)2¥72 is the term when k = 1 of the right sum

(71)1+1 <N+ ].k— 2 1>2N+13'1 = (N _ 1)2N72

Step 4: In the end we get
K
k
k=1

which conclude the induction.
Case 2:
Step 1: We add lines (2) and (4) together. Because |(N +1)/3| = K + 1 thus | (N — 2)/3] has to be K.

K
B vkt (N = 2B+ 1)\ nv—oosk
S (V) @
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Let ¥ =k+1 (k=k"—1) so the sum become

K41

_ Z(_l)k’ N =2k 2N+1—3k’k/
k-1

k=2
The term (—1) in front can be inserted to change the alternating term: (k' is written as k again for readability)
K+1
Z (_1)k+1 N - zk 2N+1—3kk
= k—1

N—Qk) _ (N+1—2k) _ (N—Qk)

Using Pascal formula for binomial coefficient we have ( b1 A &

K+1 K+1
N+1-2k _ N — 2k _
Z(_l)k+1( k: >2N+1 Skk_ Z(_l)k+1< k >2N+1 Bkk

k=2 k=2
Step 2: We add everything together (1) + (2) + (3) + (4)
(N —1)2N-2
us N -2k
71 k+1 - k2N+173k
=y (M)
k=2
K+1
+ ) (- (N * ;_ Qk) QN +1-3k,
k=2
K+1
N -2k
_ _q)k+1 oN+1-3k
TR G
k=2
First and last lines contains the same sums except the last term so they partially cancel out
pas N+4+1-2k N —2(K +1)
N -1 2N72 -1 k+1 - 2N+173kk -1 K+1 - 2N+173(K+1) K 1
(¥ =122+ 3 (<) . +(-1) P (K +1)

Step 3: Notice (N — 1)2¥~2 is the term when k = 1 of the right sum

e G

Notice as well that the coeflicient binomial of the last term is (N;{zflﬁ) where K = [(N —1)/3]. So by definition
N +1=3K +r where 0 < r < 2. The upper term becomes N —2K —2=3K +r—1—-2K —2 = K +r — 3 because
r <2 we have K +r —3 < K — 1. So we notice the upper term of the binomial coefficient is greater than the lower

term because N — 2K —2 < K — 1< K + 1 so in the end (N72K72) = (. Step 4: In the end we get

K+1
K+1
S o (V1Y
k=1 k
which conclude the induction. O

2. Counting the number string with exactly L 00 in a string that contains a single 001

We define Z;, = {s € Sn|s as exactly L substrings equal 00}. The goal is to compute the its cardinality z;, = #Z.

Claim 5. There is an explicit expression for z;, given by

N—2 L
zr = Z <fk—L+1fN—k + Z fk—L+£fN—€—k—1> (B9)

k=1 (=2

where fj, is the k-th term of the Fibonacci sequence (or 0 for negative k).
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The following lemma is used for the proof of Claim 5

Lemma 3. Let Ay = {s € ¥y — s does not contains any substrings equal to 00}. Let ay = #AxN.

f, if n > 1 is the n-th term of the fibonacci sequence.
Then ay = fny2 where 0 el
else

In addition, let A%, = {s € Ax — s does not end by 1}. Let ajy = #A%y-
Then ayy = fy41.

Proof. Let’s define A, and A}, as the subsets of Ay that ends respectively by a 0 and a 1. We call a%; and a}; their
cardinality. We have Ay = A%, N AL and an = a% + al;.
Let’s compute the first terms for each of them:
Ar={0,1} Av={0} A7 ={1}
Ay ={01,10,11} AY = {10} A} ={01,11}
Az ={010,011,101,110,111} A} = {010,110} A} = {101,011,111}

As well as the cardinality:

a1=2 a;=1 a =1
as=3 a)=1 a3=2

az=5 a3 =2 ai=3

One can see the Fibonacci sequence appearing, let’s prove it formally.
e For each s € A%, the N + 1 length string can only end by 1 to avoid 00 substrings. Thus @}v+1+ =a¥

e For each s € AL, the N + 1 length string can end by both 0 and 1. Thus a}vﬂ—i— =a}, and a9v+1+ =ak
All in all, this reads:

{a}vH =a}y +ay (B10)

a(J)\r-',-l = a}v
Let’s compute the term for N + 2:

ANtz = Ay gp + Ay
= ang1 T Q1 AN
=ans1+ay +ay
=an4+1 tan

and

* 0
AN42 = AN42
1
AN +1
=ay +afy
0 0
=an41 Tay
=ayy +ay
So both (ayn) and (a}) are described by Fibonacci sequences but with different first terms. Indeed, ay start at
a; = 3 so ay = fy12. On the other hand, a} start at a] =1 then a5 =2 so a}y = fy 1. O]

Proof. of Claim 5 We start by computing the specific case of z5. Because s € Z5 has a single substring equal 001, we
can assume its starting position to be 1 <k < N



Case 1:
Assume we have a zero in position k£ — 1 so we have two 00 substrings.

The string s € Z5 is of the form s = w; - 0001 - wo where:
o w € A,
® wy € AN_(k42)

So the number of all such strings s is a;_san—r—2 = fr_1fy_.
Case 2:
Assume we have two zeros starting in position NV — 1 so we have two 00 substrings in total.

S=...... 001 ...... 00

The string s € Z5 is of the form s = wy - 001 - ws - 00 where:
o w; € A},
o wy € AN 4

So the number of all such strings s is aj,_jay_r_4 = fi—1fn—r—3.

19

There are no other cases because s contains a single 001 so if any other places contains 00, following by a 1 bring to
case 1 and following by 00 increase the number of 00 substrings by one, making it not belong to z5. We just need to

sum over all starting position k to get the expression of z:

N—-2

Zg = Z fro1fn_p + ffn_r—3
k=1

(B11)

We now do the general case of z, for a given L such that 2 < L < N — 1. As before, because s € Z, has a single

substring equals 001, we can assume its starting position to be 1 <k < N

We now reproduce the same two previous case and add intermediates ones.
Case 1:

Assume we have L — 1 zeros in positions k — L to k — 1 so we have exactly L substrings equals 00.

s=_...0...0001 ......
T —— ——

The string s € Zy, is of the form s = w; -0...0001 - wy where:
L—1

o w €A,
® wy € AN_(k42)

So the number of all such strings s is a;,_;an_(x+2) = fe—rr1fn—&-

Case 2:
Assume we have L zeros starting in position N — L + 1 so we have L substrings equals 00 in total.
S=...... 001 . 0...0
W_/T ——
k—1 N—L—k-2 L

The string s € Z, is of the form s = wy - 001 - w3 - 0...0 where:
L
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o w; € A},
o wy € AN o

So the number of all such strings s is a;_jaN_;__o = fifnv_r—k—1.
Intermediates Cases:
We can go incrementally from case 1 to case 2 by removing one zero at the head of the 0...0 string and adding one

L—1
(except at the first time where we need two) at the end of the string s.

...... 0001 ... 0...0
—— i ~ ——
k=L 4 N—(L-1)=k-2 L-1

...... 001 0...0
< =

we see the pattern being revealed, each time we remove one zero before 001 and add one more at the end. This can
be written as the next expression:

L

fi_rifnv_x+ Z fi_rpyefn_r—x—1 (B12)
=2

where the first term in front reduces to Case 1 (it is a bit different to others since we add two zeros next), all the

intermediate cases are computed until £ = L which is Case 2. Finally, we sum over all starting positions k& which
achieves the proof.

O

3. Computing the probability

Theorem 6. The probability Py for the rule 001 of size m = 3 to realize after matching m — 1 = 2 bits 00 given
that the strings of interest all contains exactly ¢ = 1, a single times the rule is given by

i
L
Py = Z G (B13)
L=1

il

where the expression of Sy is given in Claim 4 and the one of zy, is given in Claim 5

This laborious development gives us in the end a literal expression for the computation of Py. The function is
strictly decreasing and we are able to check that for the string containing a single time 001 as a substring, the
probability to find 001 after 00 is greater than % for N < 25. The upper bound N = 25 is expected to increase
whenever we are interested to the string containing ¢ times 001 for ¢ > 2. This way, we have an intuition of the fact
that a given rules has chance greater than % to realize after matching m — 1 bits when we are guarantee that the
string contains exactly ¢ times the rule and N is not too large. This probability even increases for larger q.
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Appendix C: Properties of the moment concentration

1. Proof of Theorem 1

Proof. [Moment concentration] First, one uses the Chebyshev’s inequality (the distance of a sample to its mean) and
gets

X R 3 1
P(|9n — (Gn)| = ko) < =

where k € N and 62 = Var(g,).
Next ¢ and o can be related as follows:

Var(f,) = Var[% Z O(fr(z@y))]
= %Var[z (fr(2@;)))]

- % -n - Var[®(fr(z(;)))]

= Var[®(fr (x)]

n

where we successively use the properties of the variance of the sum of independent random variables.
Using now the property of Monte-Carlo estimation, we have (g,) = y. So we can rewrite the first expression as:

ko 1
P(|jn —y| > —=) < —.
(12 y|,\/ﬁ),k2

Using the law of total probability, we can change the inequality into:
. ko 1
P(lgn —yl < —=) =1

'S kY
ko

Finally, let € = NG and substitute k£ to get the desired result:

o
Py — g, <€) >1— 2
(ly = gnl <€) =
O
2. Proof of Theorem 3
Lemma 4. [Concentration Bound with Thresholding]
Let o0 = Var[®(T; fr(x))] be the variance of the thresholded function. The following expression holds:
2
ol = p(t)o? (t) + ui (H)(1 — p(t)p(t) (C1)

where p(t) is the probability to sample from the non-zero region of T} fg after thresholding, 1 and o? are respectively
the mean and variance of this non-zero region.

Proof. To express o®” we use the law of total variance. For a given t, let’s divide the space of ® (T} fr(x)) into its zero
part (G = 0) and its non-zero part (G = 1). The law of total variance allows us to write the variance Var[® (T} fr (x))]
(which we will call Var(X) for convenience) as follows:

Var(X) = E[Var[X|G]] + Var[E[X|G]],

where G is our grouping variable separating the zero part from the non-zero part. Assume
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e ug=0, 00=0
® [, 01

are the mean and variance of respectively the zero and non-zero parts. The first term of Var(X) (within group
variance) turns into E[Var[X|G]] = p1o?.
The second term (between group variance) can be computed as well: we have u = popg + p1p1 for the total mean

Var[E[X|G]] = po(po — 1) + p1(p1 — p)
= po(po — p) +pr(pa — p)
= popipt +p1pi(1 —pr)?
= M?popl-

Finally we get:

o® = \/Var(z) = \/p(t)aﬁf‘(t) + 13(t)(1 = p(t)p(t),

We now prove the Theorem 2

Proof. [Threshold increases probability] (intuition behind the proof)

Let’s show that the theorem holds for some nontrivial case with moderate t. First, we notice that the terms in
Lemma 4 do not depend on permutations of the domain of fz, therefore for this analysis we can reorder the function
according to decreasing values. Let’s assume that fz(x) can be approximated by an exponential law fz(z) = Ae™**
(after reordering the values). Therefore, we can approximate each terms from lemma 4:

p(t)
w1 (t) = / z- e Mdg
0

1t tlog(t/N)
Yot

p(t)
o1(t) = / 22 Xe A — 2
0

(A2 — 2 + 22 log[t/A] — t(X +t) log[t/\]?)
/\4

Putting everything together in Lemma 4, we obtain an explicit expression for the value o®’. For a fixed A, the

function in ¢ increases before reaching a maximum and then decreases. One can also check lim; o, o®? = 0. Finally,
since the function fr is continuous, the Intermediate Value Theorem tells us that there exists a value of ¢ for which

oc®’ < 52, This proves equation 11.
Now consider £ € R* such that 1 — ]?12 >1- % From Theorem 1 the moment computed from the thresholded
function read as:

o (1)?

Hence we want:




23

We focus on

1 o®? 1
en ~ k2
c® 1
eZn — k2

2
®)? €
o < 2

Through the same reasoning as equation 11, there exist a ¢ that fit this scenario. And so the same t works as well for
equation C2 which certify equation 12 and achieves the proof.

O
Appendix D: Properties of the transform and distinguishability
1. Proof of Lemma 1
The following claim is prerequisite to show Lemma 1.
Claim 6.
a# 0% — Fy(a)ia =1 (D1)

Proof. The proof is by contradiction.
a = aj - - ap matches with i, = 0V"F g, ... q; at the last k bits. If we assume Fy(a)lia) > 1, then, a matches with
i, at somewhere else, say a; ---ax = 0Wqy - ak—;,(l €ZT,1 <1 <k—1). Then we get a = 0k by solving

a1 = 07
ap =V,
a+1 = az,
ap = Ak—|-
This contradicts with a # 0%, O

We now prove the Lemma 1

Proof. [Injectivity] The proof that @ = b = Fn(a) = Fy(b) : is trivial from the definition of Fjy. Thus we only
need to prove Fy(a) = Fn(b) = a = b. To do so, we use the contraposition that is, we want to prove that

a#b=> Fy(a) # Fn(b).
Set
a:al-.-a]“(ai6{071}7i:17...k),
b=0by-- b, (be{0,1},i=1,---k),
0™ =0-..0,
———
ia :O(J\/v_k")al...a/]97

iy = 0N =R oy,
and Fi(a)[i] where i € {0,1}" denotes the i-th element of the vector Fi(a).

Case i) When a = 0(F)
Fn(a)[0™)] = N — k + 1, by the definition of Fy. Fy(b)[0N)] = 0, since b # a = 0%). Thus, Fx(a) # Fx(b).



Case ii) When a # 0%
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Let b # 0, since the case of b = 0%*) can be proved completely the same as the case of a = 0). We prove by

contradiction. Assume Fiy(a) = Fy(b). This gives

Fn(a)[ia) = Fn(b)[ia],
En(a)[ip] = Fn(b)[ip).

From Claim 6 and equation (D2), Fy(b)[is] = 1. Thus, for an integer ki, 1 < k; <k —1,
by b = 0F1)gy - gk

since 0 # b # a.
From Claim 6 and equation (D3), Fy(a)[ip] = 1. Thus, for an integer ko, 1 < ko <k — 1,
ap---ap = 0F)p; ... ks

B 0(k2)0(k1)a1...ak7klik2 lfk_kQ 2 kl +1
T ) otk2) gk —k2) ifk—ky <k

by equation (D4) and 0 # a # b . By considering the same way in the proof of Claim 6, a will be 0(%) in both cases.

This contradicts with a # 0*). Therefore, Fy(a) # Fy(b).

2. Proof of Lemma 2

Proof.

1Fx(a) = Fx (D)3
:FN((J,) . FN(a) + FN(b) . FN(b) — 2FN((I) . FN(b)
Thus, we will analyze Fiy(a) - Fn(b). From

I+1
Fryi(a) = Z (158(271) ® |a) @ 1;@(l+171)) ’

i=1

the inner product becomes

+1

. N T . v
_ Z 15@(1—1) ® o) ® 1;®(z+1—z)> (139(1 —-1) ® b ® 1;9(!-&-1—1 ))

=1 i’

=

1;@(%—1) ® |b> ® lga(lﬂ—i’))

T

(
(

= (1;8’("‘1) ® |a) ® 1?“*1‘“)T
(

/N N

1;@(7:—1) ® |a) ® 1§(l+1—z‘)> 1;@(7:/—1) ®|b) ® 1%@(l+1—i’)) ‘

For the first term,

, \T " y
Z (1;@)(1—1) ® o) ® 1;®(z+1—1)) (139(1 —1) ® |b) ® 15@(14—1—1 ))

i=i’
I+1 ‘ ‘ A ‘
:Z (1§(171)T1;®(171)) <a|b> (15®(l+171)T1;®(l+171)>

i=1

O
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since (a|b) = dg.p-

For the second term with a # b, the positions of |a) and |b) differ, so the calculation of the inner product will not be
easy as the case of the first term. Here I assume that [ > &k and will divide the second term into two cases; (i) when
the positions of |a) and |b) do not overlap, and (ii) when they overlap. The case of [ < k can be regarded as only
considering Case (ii).

Case i): when the positions of |a) and |b) do not overlap

It can be illustrated as (I — k 4+ 1) cases shown below (there are 15s in the blank places):

ajaz - ap—10k
biby - - bp_1by,

a1a2 - Gp—10k
b1b2 e bk—lbk
S~~~ ’

102 - Gp—10k
b bQ“'bk, bk
\-\,-/ 1 1 ’

ai1az - - Qp—10g
bibg - - br_1by.

Here I showed the case when ay is in front of b;. The opposite case (when by is in front of a;) can be considered in
the completely same way. For all of them, the inner product will be 2! =% because the inner product of |a;) (or |b;))
and 15 will be 1 for all 1 < ¢ < k (there are 2k of this inner products), and the inner product of 15 and 15 will be
2 (there are (I — k) of this inner product). When there is g-length gap between the positions of aj and by, there are
(I —k — g+ 1) options for the position of a;. Thus, the sum of inner products is

l—k
2'21—k2(1_k_g_|_1):21*k(l—k—|—1)(l—k+2).

g=0

Case ii): when the position of |a) overlaps with the position of |b)
These cases will be illustrated as below; when a; is in front of b (Case ii-1)

a1a2 - Ap—10k
biby -+ bp_1byg,

a102G3 - - Ap—10k
biby - brp_2br_1bg,

a1a2 - Ap—10k

biby -+ br_1bg,
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and when by is in front of a; (Case ii-2)

ajaz - Qp—10g
biby - bp_1byg,

a102G3 - Ak—20k—10F
bibabs - by,

apaz - - ap—10ag
b1bg - - - by _1b.

For both (Case ii-1) and (Case ii-2) the jth pattern represents the case when the positions of a; and by are j-separated.
For j-separated case, the sum of the inner product is

{(l —j+1)2!77  when overlapping part of a and b is same,
0 else.

This value depends on a and b. We will calculate the maximum value of the inner product of this part. The task is
to find the possible combination which gives the maximum inner product value from the below table.

’ i ‘ Case ii-1 ‘ Case ii-2 ‘
1 2t 2t
2 (1—1)2"72 (1—1)2"72

E—1{(1—k+2)27F (1 -k + 2)2i !

TABLE IV: Maximum inner product value for each separation value j

First, choose [2!~! and 12!~'. This is because

k—1
=Y (I—j+1)2"7
j=2
k—2
1
21 [1 2 — <2> (k+1+2)
§2lfll

so you get more than half of the possible inner product value by choosing them. If you choose these two, as---ap =
b1---bp_1 and ay ---ax_1 = bs - - - by, have to be simultaneously held. You can easily see that this condition gives

a = 01010101 - - -
b =10101010- - -

or the opposite. This also satisfies the conditions for j: odd. You can see it by sliding a (or b) to the right for j: odd

positions. If you try to satisfy any of the condition for j: even for the above a and b, it will immediately gives you
a=b=0000---(or 1111---).



27

Finally, the maximum inner product value for case (ii) is
2y (—j+1)2
7: odd

_ 2 - @m 1)+ 127G (k= 2n)
= 227;—1 [l _ (2m _ 1) + 1] ol—(2m—1) (k - — 1)

m=1
242 7 6n — 30+ 2]
— 3 -24 ——F
_ 9 | * 4n |
) 22 ] 6n — 31 — 4]
I _94p = = -
9 -3l + =
242 7 3k —3l+2]
B T _31 — 2 + T_ (k . even)
T2 3k —31—1]
T 31_2+T (k‘Odd)

For the second term with a = b, the sum of inner product value will be the sum of
2k —k+ 1)1 -k +2)
which is from Case (i) and

k—1 1 k—2
_ =5 _ 9ol _9_|Z
23 (1—j+1)2 2 [21 2 <2> (k+1+2)

Jj=1

which is the sum of all the values in TABLEIV from Case (ii). We also observe that Fy(a) - Fiy(a) does not depend
on a. Thus, we can rewrite ||Fy(a) — Fyx(b)|3 as

[Py (a) = Fn (D)3 = 2[Fn(a) - Fx(a) = Fy(a) - Fx (b))

Therefore we have to check the difference between Fiy(a) - F(a) and Fy(a) - Fn(b). For the first term, the difference
is (I +1)2!. For the second term, the difference appears in Case (ii), and the minimum difference is

1\F2
2! 21—2—(2> (k+1+2)
2!+2 3k —3l+2
T |:3l_2+2k: (k:even)
o) 2t 3k—3l—1
Add these differences and double it, and we get Theorem2. O

Appendix E: Additional properties

Definition 1. [¢;-Norm of the transform]

N—k+1

IEv@li= > > Snearo- (E1)

ze{0,1}N =1
We need the following for the proof of Lemma 5
Claim 7.

Fyii(a) = (?x EZD +a® lonowi

=1, ®FN(CL) +a® 12N—k+17

where ® is the tensor product, 1,, denotes n length column vector with all elements 1, and a is the 2*-length column
vector of which a-th element is 1 and the rest is 0.
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Proof. An (N + 1)-bit string 2(¥+1) € {0,1}V*! can be made by putting 0 or 1 in front of an N-bit string (V) €
{0,1}". We can divide {0,1}" into two sets: A set X which consists of N-bit strings which start with (k — 1) bits
matching the (k — 1) last bits of a, i.e. as---ag. Its complement set X made of the remaining N-bit strings. Put a;
in front of (™) € X and generate (N + 1)-bit string a1z™). Then the number of k-bit strings in a;z™¥) that matches
with a increases by one from the number of k-bit strings in z(N) that matches with a, because (M) € X starts with
as - - - ap. In other cases, i.e.,

- putting 1 — a; in front of (™ € X and

- putting a; or 1—¢ in front of ™ e X,

the number of k-bit strings that matches with a does not change. Writing this explicitly,

Fn(a)z™M]+1 ify=a; Az e X,
Fyi1(a)fy=™] = {FN(G)[Q;(N)] else.

Therefore, we can calculate Fiyy1(a) by the following procedure;
1. Concatenate F(a) and Fy(a),
2. Add 1 to the elements of which indexes start from k-bit string a.

The 2V+! length vector indicating the position of (N +1)-bit strings which start from a can be written as a® 1on-—xi1,
since there are 2V+1=F strings like that. Thus, the equation in Claim 7 holds. O

Lemma 5. [/;-Norm Recursive Expression]
| Ena(@)lls = 2| Fy (@)l + 2V~ (E2)

Proof. By taking the ¢;-norm on each side of the equation from Claim 7, it can easily be shown. (both vectors on the
right hand side of the equation are vectors with non-negative elements.) O

Lemma 6. [¢;-Norm Explicit Expression]
| Frri(a)ls = 2(1 + 1) (E3)
Notice that all elements a have the same norm!
Proof. By substituting N in Lemma 5 to k + [,
| Firror (@ = 20| Fni(@) 1 + 211
Set [[F+i(a)[1 = s1. Then,

si41 =28 + 271,

Si+1 81
PESES + 1.
Thus,
s1 8o
o~ th
51
g =140 (s0=[Fe@)lh = fal=1)
[ Frti(a)|ln = si

=211+ 1).
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Lemma 7. [Distance expression] The distance between the transform of two different rules a and b of length k can
be expressed as follow:

[1En(a) = En(b)|l2 = Q{I\Fw(a)\lz —Cn(a,b)], (E4)

where

Cn(a,b) = > min(Fy (a)lz], Fi (b)[z])

zesupp(Fn (a))Nsupp(Fy (b))

is the number of common elements of both vectors. (It is the number of times both strings a and b appear as a
sub-string of x for all x.)

Proof. We want to compute ||F,,(a) — Fn(b)||2, using the polarization identity for ¢5-distance we have :
[1Fn(a) = En(b)ll2 = [|Fn(a)ll2 + [Fn (D)ll2 — 2Fn (a) - Fn (D).
Then we use the fact that all rule have the same ¢s-norm to get
|Fx (@) = En ()2 = 2| Ex(@)llz — Fx(a) - En (b)) (E5)

Finally, Fiy(a) - Fn(b) = >, (Fn(a)[z], Fy(b)[z]) is non-zero iff « € supp(Fn(a)) Nsupp(Fn(b)). O



